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Preface

I
The purpose of this thesis was to examine electron kinetics in plasmas. The conditions

Iencompass those relevant to the development of both excimer lasers and negative ion sources.

I The vehicle for this investigation was a numeric solution of the time-dependent collisional Boltz-

mann equation. The method of solution is based upon that developed by Rockwood (14). The

Iprocesses considered in this code are elastic electron-neutral collisions, as well as ionization,

excitation, attachment, and superelastic collisions.

IAlthough much re-structuring and many program modifications and additions were required

in order to study these devices and include these processes, the code's foundation was laid by

Ges Seger. His programming style and foresight made it much easier for me to pick up where he

Ileft off. I also wish to thank my advisor, Dr William Bailey for his insight, help, and suggestions

throughout this project. He even went as far as France in order to ask my questions of Dr Bre-

tagne, another person that I am indebted to. His many articles on the subjects pertaining to

plasma physics gave me further insight and ideas that proved useful.

IFinally, I would like to thank my wife Kathi for her patience and support throughout this

project, as well as staying up with me to the wee hours needlepointing beside my computer, just

so we could be together.I
I
I
I
I
I
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UAbstract

I
In a continuing effort to analyze plasmas generated in a variety of ways, several refinements

I and improvements have been added to a numerical solution of the time-dependent collisional

I Boltzmann equation. The computational method utilized, originated by Seger (16) with the

Rockwood formalism (14), includes elastic collisions, excitation, ionization, and superelastic col-

lisions from multiple states, as well as electron attachment. The attachment process is explored,

with the results confirning predictions made by the energy moment of the Boltzmann equation.

I The possibility of steady state negative mobility is explored in lean Ar/F2 mixes, resulting in

computational confirmation of theoretical predictions. A non-uniform energy grid is also incor-

porated into the method of solution, requiring new finite differenced representations for the elec-

tron flux terms from field, recoil, and electron-electron interactions. All of these terms are tested

independently and validated against analytic results. Implementation, complete with inelastic

collisions, is validated against experimental transport data for both molecular and rare gases. A

method for dynamically allocating the energy grid in an effort to optimize the computation is

developed and evaluated. The inclusion of the non-uniform grid results in the consideration of

larger energy ranges than previously possible. This larger energy range, demonstrated up to 90

eV, allows the exploration of the effects of electron beams on the electron energy distribution.

Energy distribution functions typical of a 10 A electron beam source are calculated at 60 and 90

eV and compared to previous solutions.

II
I
I
I
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ELECTRON KINETIC STUDIES UTILIZING THE SOLUTION OF THE

TIME-DEPENDENT COLLISIONAL BOLTZMANN EQUATION

I , IntroductionI
The Boltzmann equation is a continuity equation describing the flow of particles through

phase space under the influence of externally applied forces and collisions. While analytic soIL-

tions to the Boltzmann equation exist for special casts, a quantitative analysis of plasma devices

demands that the solution be obtained through the use of numerical methods. While some

methods rely on finding only the steady state solution (8,10), a more general method is adapted.

This admits the study of devices such as pulsed electron beam sustained plasmas, and permits

self-consistent coupling of plasma chemistry and heavy particle kinetics. This time-dependent

solution can be propagated forward in time, allowing the observation of the temporal evolution

of the distribution, until either a steady state solution is achieved or a self-similar form of the

distribution is obtained.

Solutions of the Boltzmann equation in energy space yield electron Energy Distribution Func-

tions (EEDF). Once the EEDF is obtained, transport parameters and plasma kinetic rates can

then be calculated by taking various moments of the distribution. These parameters and rates are

invaluable in the design and optimization of many plasma devices. In gas-discharge lasers, a

knowledge of the distribution function allows the kinetic pumping rates to be determined, which

are a critical part of laser design and optimization. Since the plasma within such a device is gen-

II



I erated and sustained by electron interactions with the electric field and gas particles, accurate

pumping calculations are critically dependent on the proper treatment of all relevant collisional

processes. Such processes include impact ionization, excitation, and superelastic collisions.

In excimer lasers and generators, ancilliary sources of ionization in the form of an electron

beam or hot filament are employed. Beam energies in such devices are typically at much higher

I energies than the plasma mean energy. Therefore, the analysis of these devices requires not only

the inclusion of a source term, but also an extension of the energy range in the solution method.

In the exploration of the excimer lasers, and in particular the e- beam sustained rare gas halide

3m lasers, the process of electron attachment is of fundamental importance, since it is just such a

process that allows the production of the negative ions that are used in the reaction mechanism.

Thus, any analysis of EEDFs characteristic of excimer lasers must properly include the process

of electron attachment. The process of attachment is also of fundamental importance in dis-

Icharges that contain a halogen gas as one of the constituents. These gases are very electronega-

tive, and as such will tend to remove free electrons from the system. This electron loss can result

in unusual effects within the discharge. One such effect leads to the possibility of a plasma

discharge with a steady state negative total electron mobility. When an electric field is applied in

a typical discharge, the electrons will tend to drift in a direction anti-parallel to the field. In such

I a case, the mobility is said to be positive. A negative mobility, therefore, leads to the electrons

drifting parallel to the electric field. In such a case, it is possible for the electrons to give energy

to the field, resulting in an increase in the field strength (15:1596).

The purpose of this study was to explore the electron processes fundamental to the operation

of plasma devices that are of interest to the Air Force. These devices include electron-beam sus-

I tained plasmas, excimer lasers, and magnetic multicusp discharges. The analysis of each of

these requires additional consideration within the code in terms of energy conservation, external

sources, and electror interactions, both between themselves and with the gas particles. All of

3] these processes will contribute to the steady state operating point of the plasma, and thereby have

2



Ia very large impact on the design, optimization, and analysis of the devices.

IThe analysis and understanding of the physics associated with these devices can be greatly

improved by careful calculation of those properties which can be experimentally measured in the

Ilaboratory. If these calculated parameters compare favorably to the experimentally measured

ones, then confidence can be given that all pertinent electron processes have been identified in

I the solution method. Such parameters include drift velocity, average energy, characteristic

energy, and the ratio of the Townsend alpha coefficient to the neutral number density, ac/N.

In the analysis of excimer lasers, multicusp discharges, and electron beams, a source of elec-

trons is typically present at energies which are high compared to the energies typical of gas dis-

charges. Therefore, in order to study such devices, the energy range of the solution must be

I extended to energies in the range of 0.1-100 keV. In the method of solution developed by

Rockwood (14), this energy range is broken into K energy bins of equal size, and the method of

finite differences utilized to solve the resulting K coupled equations simultaneously. This uni-

form energy method is practical in devices in which the energy range can be broken into approxi-

mately 300 energy bins or less. In the solution method, the K coupled equations are arranged

into a square matrix of size K x K, and the inverse calculated. Aside from the physical limitation

on the size of the K matrix due to computer memory, the time required for this inverse to be

calculated is proportional to the cube of K (12:30-31, 33, 368), regardless of the method used.

This requirement translates into a maximum energy range of approximately 30 eV for rare gases,

and 15 eV or so for molecular gases. The number of energy bins required to accurately represent

the distribution without rendering the basic assumption of finite differencing invalid is critically

linked to the cross section's dependence on energy. In molecular gases, the inelastic processes

that are grouped near the lower energies require a small energy bin size in order to accurately

represent the distribution. This smaller bin size reduces the energy range of the solution for a

fixed number of bins. In rare gases the threshold energy of the inelastic processes are higher,

3



I

I and a larger bin size can generally be used before it leads to invalidating the finite differenced

Iassumption. Clearly, then, this uniform bin size cannot be efficiently used to extend the energy

range to that required by the e- beam devices.

In order to extend the present method of solution of the Boltzmann equation out to these

higher energies, while still retaining accuracy and stability of the solution, several researchers

I have adopted a non-uniform energy grid, consisting of differential energy elements of unequal

size (1:1201) (2:2209). One method used is to allocate the energy axis logarithmically (3:814).

This method relies on the premise that the distribution changes most rapidly at the lower ener-

gies, and less so as the energy is increased. This method can be effective at calculating distrib-

utions out to the higher energies as Bretagne, et al (3) has done for molecular hydrogen, in which

the inelastic thresholds are largely at the lower energies (1/2 to 12 eV). However, this method

does not favor gases with inelastic processes which occur at higher energies, such as for the rare

gases. This is because the differential energy elements are always increasing with energy, with

no regard as to where an inelastic process begins. Since inelastic processes can lead to signifi-

cant structure in the distribution, this method is not as desirable as one in which the energy ele-

ment size is reduced in regions around the threshold energy.

While the non-uniform energy bin method is used to extend the energy range of the calcula-

Ition, it may also prove to be more accurate than the uniform grid in the computation of the solu-

tion for a fixed energy range. Thus, if there is some method which can increase the accuracy of

the solution in the same amount of time, then clearly it is advantageous to include this method

into the code.

A computer code that yields the numerical solution to the time-dependent Boltzmann equa-

Ition along a non-uniform energy grid has been developed using the formalism given by Rock-

Iwood (14), with the foundation established by Seger (16). This code considers excitation,

ionization, attachment, elastic and superelastic processes as well as electron-electron interactions

and momentum transfer. The possibility of excitation, ionization, and superelastic collisions

I
4
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I from multiple excited states is included. The transport parameters calculated with the distrib-

utions resulting from the non-uniform finite differenced representations of the field and recoil

driven flux terms are validated against analytic results. The new finite differenced terms

representing electron - electron collisions are tested for conservation of energy and particles, as

well as for convergence to the proper form when considered alone. Using a logarithmically allo-

cated energy grid, transport parameters for Ar and H2 are compared to uniform grid calculations

of the same, as well as experimental data. EEDFs for an electron beam generated H2 plasma are

calculated using a logarithmic energy grid and compared to previous calculations. A new

method has been developed which allocates the energy axis based on the energy dependence of

elastic and inelastic processes. The utility of this dynamic energy bin allocation method is

I explored using an approximate solution to the time independent Boltzmann equation as a bench-

mark distribution. In addition, the process of electron attachment is tested and validated with

predictions made by the energy moment of the Boltzmann equation. The possibility of steady

state negative mobility was studied in lean Ar/F2 gas mixtures, with the results confirming theo-

,etical predictions.

I
I
I
I
I
I
I
I
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II. BackgroundI
IOrigins of Solutions to the Boltzmann Equation

IThe methods used to solve the Boltzmann equation for the distribution of electrons in energy

Ispace date back to 1946, with T. Holstein (8). Although his equations were derived for distrib-

utions driven by AC field conditions, they can be applied to the DC case as well. Holstein

Istarted with the Boltzmann equation describing the continuity of electrons in phase space:

atr (1)
y~~(V r)f + (a-VV)f ~t~

where f is the electron distribution function describing the number of electrons in six dimen-

sional phase space, thus f =f(v., v,,,xy,z,t), v is the electron velocity vector, a is the elec-

tron acceleration due to some applied force, V, is the gradient in geometric coordinates, and V. is

the gradient in velocity coordinates. Holstein then assumed that the function f is very nearly

spherically symmetric in velocity space for a sufficiently small applied field. This assumption

allows the expansion of the distribution into an infinite series of spherical harmonics, with the

axis defined by the direction of the field. Assuming azimuthal symmetry, the spherical harmon-

ics move to Legendre polynomials:

f(x,v,O,t)= fn(x,v,t)P"(cos0) (2)
n=0

where the P.'s are the Legendre polynomials. In practice, this infinite series is truncated after

the first two terms, and is called the Lorentz, or P,, approximation. The result of this expansion

is a pair of coupled equations in terms of f, and fl, where the former represents the symmetric

6



part of the distribution, while the latter represents the anisotropic part. At this point, Holstein

grouped the pair of coupled equations into a single equation. He then concentrated on finding

the steady state solution to this single equation, which represents the solution to the Boltzmann

equation for D.C. or high frequency A.C. discharges.

Computational Method of Solution

In 1973, Stephen Rockwood published a paper outlining a method used to calculate time

dependent numerical solutions (14). In this method, the processes considered were electron-

neutral elastic interactions, inelastic interactions in the form of excitation, ionization, and super-

elastic collisions, as well as electron-electron collisions. The basic principle used to describe the

time rate of change of the electron number density was the continuity equation. This equation

can be written as

-n +V J =S-L (3)
at

where n is the number density of electrons, and V - J represents the flux of those electrons

through energy space due to elastic and inelastic collisions as well as the external force arising

from the electric field. S and L represent an external source and loss term respectively. Thus,

the time rate of change of the electron number density due to elastic and inelastic collisions, as

well as external forces can be written as a sum of terms expressing the divergence of the flux of

electrons through energy space resulting from each process:

7



an aJ IJ f +S-L (4)it=- iW at t at " offiion(4

Here, the subscripts f, el, and ee denote the field, elastic, and electron - electron terms respec-

tively. As Rockwood shows (14:2348), the current density of electrons in energy space due to

the applied external electric field can be written as

2Ne(E/N)2e n an

Jf' 3m(v/N) 2e

-- = (2, qA(6) (5)
N m

where v and a(E) are the collision frequency and cross section for momentum transfer respec-

tively, q, is the mole fraction of species s, and n is the electron number density at energy F.

Similarly, Rockwood shows that the current density of electrons in energy space due to elastic

collisions with molecules of species s at a gas temperature of T is (14:2348)

Jl :{nQ -sJ-kTe ] (6)

v = 2n N(2e/m)m 1 q (F)/M$

where M, is the molecular weight of species s, and k is Boltzmann's constant. Note that in both

of the expressions for the current densities J1 and J., there is a term that is proportional to the

number density of electrons n (convective), and another which is proportional to the energy gra-

dient of the number density an/k, (diffusive).

8



The remaining terms in the continuity (Boltzmann) equation are those which represent inelas-

tic electron interactions with gas molecules and electron - electron interactions. The inelastic

terms can be written classically as n,Na(.)v(e), where the cross section a would be for the

appropriate inelastic process, N represents the number of collision partners, while n, represents

the number of electrons at the collision energy.

Intra-electron interactions can also be represented by the use of the Fokker-Planck approxi-

mation to the electron-electron collision integral described by the energy space divergence of the

electron current density (14:2357):

fn DJee
-T--(E, t) = aE

Je= P( n _ -Qnj (7)

where

P(I , t) =2C la  x n (x , t )dx

0

+ 2e fx-12n (x, t)dx

Q(E:, t) - 3C" a n (x , t ) d x

0

Following the traditional method of solving differential equations by the method of finite

differencing, Eq (4) is projected onto an energy axis that has been divided into K energy bins of,

in general, various widths. Thus the differential equation is recast into K coupled linear equa-

9



tions and solved simultaneously. The actual derivation of the finite differenced terms represent-

ing the flux of electrons through energy space due to the applied electric field and elastic

collisions between electrons and neutral gas molecules is included in Appendix A. In this

derivation, particular attention has been paid to the fact that the energy axis is constructed of

energy bins of various sizes, as well as maintaining numerical stability with no electric field

present. Neglecting electron - electron collisions due to their non-linearity, and setting to zero

the source and loss terms, the finite differenced Boltzmann equation can be written as (14:2349)

dn, _+R' N'IN
(it - a k - 1 nk - 1 + b+n+ -(a + bk)n + j N(sjk +,,,,ink +my "4 Ri k _ oN SN

$,JJ

+Rsk +,,ink +,, + 81ky_ Rsmfm - (Rsjk+ Rsjk+ Rk)nk) (8)

where k is the energy bin, s is the gas species, j identifies a particular inelastic process, and m is

the threshold energy for that process. The R's represent rates (aY(E)v(c)) for each process. The

ak's and bk's represent elastic promotions and demotions respectively, each from the kth

energy bin due to the applied field and recoil with heavy particles, while nk represents the num-

ber density of electrons with energy between F-, - and Ek. Therefore, nk is a centered quantity in

relation to the bin spacing. Thus the first term on the right represents the upflux of electrons due

to momentum transfer and the external field from the energy bin directly below the k± bin. Simi-

larly, the second term represents the downflux of electrons due to momentum transfer and field

from the energy bin directly above the k' bin. The third term represents a loss of electrons out of

the k bin due to the upflux of electrons to bin k+l, and downflux of electrons to bin k-I. The

first term in the summation represents an addition of electrons to bin k due to an electron that

underwent impact excitation at an energy level of k+m, where m represents the threshold energy

for the excitation process. When that electron struck an atom and excited it to an upper level, it

expended an energy equal to the excitation energy for that process. Thus, the electron lost an

amount of energy equal to the threshold energy, thereby becoming an addition to the energy bin

10



that is located a "distance" of the threshold energy below it on the energy axis. The second term

in the summation represents superelastic contributions to the k' bin from the energy bin located a

distance of the threshold energy below it. Likewise, the third term represents additions to bin k

due to electrons causing impact ionization at bin k+m, where m represents the threshold for the

ionization process. The next term reflects the assumption that all of the secondary electrons

emitted by ionization reappear in the first energy bin on the axis. The last terms under the sum-

mation represent all the inelastic losses out of the k bin - excitation, superelastic, and ionization,

respectively.

Recognizing that this differential equation was constructed so as to be linear in nk, it can be

rewritten in matrix form as

dnk (9)

dt Cklf(9

where C is a K x K matrix that remains constant with time, with K denoting the number of

energy bins along the entire energy axis. The applied electric field and recoil terms will be

placed into C such that it will become tridiagonal. The excitation and ionization terms will be

placed into the C matrix above the diagonal, while the elements representing superelastic con-

tributions will be placed below the diagonal. Thus, every element along the diagonal itself repre-

sents a loss out of the kh bin, while every element not on the diagonal will represent an influx of

electrons into the k bin.

The left hand side of Eq (9) can be differenced using a simple Euler relation:

dnk n(t + At)-nk(t)

dt At

11



Since the n, on the right hand side of Eq (9) is the electron density at time t + At, Eq (9) can be

rewritten as

nT(t +At) = (I- CAt)-'(/)(1

where I is the identity matrix, and W(t) represents the electron number density in each of the K

energy bins at time t. From Eq (11), it can be seen that if the electron number density is known

at any time t, it can easily be calculated for the time t + At. Since the C matrix is a constant, the

inverse need be computed only once. Rockwood states that the convergence properties of this

solution method are very good, even for arbitrary choices of _n(O) (14:2349).

With the C matrix incorporating all of the electron-neutral collisional interactions, the single

differential equation Eq (1) is broken into a number of coupled equations. This system of equa-

tions is then solved simultaneously, with the solution being given by the distribution function at

the next time step. This solution is then marched forward in time, until the distribution changes

very little in comparison to the previous solution. At such a point the self-similar form of the

distribution has been achieved. This solution method has not, however, included the effects of

electron-electron collisions in determining the final distribution. In the absence of any other pro-

cesses, the electron-electron collisions will drive the distribution to a Maxwellian. The influence

of this effect becomes more important at the higher fractional ionizations. However, since they

are non-linear they cannot be included into the C matrix, but must be handled another way.

Electron-Electron Collisions

The electron-electron interactions are nonlinear with respect to n, thus they cannot be

included into the C matrix of Eq (9). They are incorporated into the solution method by adding

12



to the right hand side of Eq (9) the matrix T(n), which is tridiagonal. The resulting equation can

be written as:

;7(t +At) = (I-CAty-(I+TAt)n'(t) (12)

The elements within T directly correspond to the C matrix for the special case of momentum

transfer only. The elements along the diagonal represent losses out of the bin, while the elements

above and below the diagonal represent the downflux and upflux, respectively, of electrons from

other bins. The primary difference between the two treatments lies in th fact that the coulomb

collision integral takes the entire distribution of electrons into account at each time step in order

to describe the electron interactions, which is the source of the nonlinearity. The momentum

transfer between electrons and neutral particles, on the other hand, requires only a simple binary

collision, thus they can be treated implicitly, while the former is treated explicitly in this

approach. The elements of the T matrix must be computed for each time iteration throughout the

computation. Appendix B contains the derivation of the finite differenced terms representing

electron-electron interactions along the non-uniform energy axis. In this derivation, it is impor-

tant to remember that the finite-differenced representation for the electron-electron interactions

must obey three important principles: conservation of energy, conservation of particles, and

relaxation of the distribution toward a Maxwellian when electron-electron collisions are the only

process at work. Conservation of particles is ensured by the flux divergent form of the bin rate

equations, coupled with appropriate boundary conditions. Conservation of energy is guaranteed

by proper construction of the electron-electron matrices. The last property requires that with

electron-electron interactions only, the distribution of particles should become a Maxwellian at a

temperature equal to 2/3 of the average energy. This property is achieved by the use of detailed

balance in requiring that the upflux of particles from one bin to the next higher bin equals the

downflux from the higher bin to the one just below it.

13



U

E- Seger - A Working Code

Developed using the Rockwood formalism, Seger's code (16) was able to solve the Boltz-

n mann equation for the self-similar form of the solution. In this method, the u(t + At) calculated

by Eq (11) becomes the next '(t)in the process. This code considered momentum transfer,

superelastic, excitation, and1 ground state ionization processes. What was required of the user

3 were input tables of cross section data for each process of each gas considered, the relative

amount of each gas present, a particular E/N value, and certain other parametei. which defined

3= the problem to solve, such as neutral gas temperature and pressure, excited state population, etc.

Once the solution to the Boltzmann equation was obtained, then drift velocity, average energy,

-- and the free diffusion coefficient could be calculated.

Transport Parameters

The transport parameters serve to link t,%. Micro r,"ic world to the macroscopic. In practice

it is very difficult for the experimentalist to measure directly the distribution function itself, but it

3- is very practical to measure other parameters which in theory depend directly on the distribution

function. Conversely, the theoretician cannot directly determine any of the transport parameters,I
but must first calculate the distribution function upon which they are based. In order to deter-

3- mine if this distribution function is valid, the parameters calculated from it must be compared to

the experimentally measured ones. In a very real sense then, the experimentalist is much like a

-- blind man feeling different parts of the elephant in an effort to picture the whole beast.

The calculation of the transport parameters is based upon taking different moments of distri-

I= bution function. The drift velocity is calculated by (10:472):

14
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Vd = f m (13)
-

ffo(u)u '2du
0

I where the two term approximation has been explicity retained in this expression. Thus,

I f(u) =fo(u) + fl(u)cosO , wheref. and f, are the reduced distributions and are coupled to

each other. The free diffusion coefficient Df is calculated by (17:176):

D= 3vr(14)_

where u is the velocity, v, is the system relaxation collision frequency and is equal to the effec-

I_ tive collision frequency when v is independent of velocity (17:171-176). T.e average energy is

calculated by taking the energy moment of the solution to the Boltzmann equation:

-~ "ef(c)de

-<C> 0 (15)
-- ff(c)dc

0

The characteristic energy is a quantity which can be measured in an actual plasma discharge,

I and it can be used to define an equivalent Maxwellian temperature (4:101):

ek = D = kT (16)
I E15
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Here, it has been written in terms of the Einstein relationship. It is seen that if the distribution

was indeed Maxwellian, then the characteristic energy would be 2/3 of the average energy.

Moments of the Boltzmann Equation

Serving as another link between the unseen world of the very small and the world in which

we live are the moments of the Boltzmann equation. Describing different aspects of the plasma,

3- the moments of the Boltzmann equation detail the macroscopic quantities that researchers are

able to measure. These are, principally, the production and loss of electrons, the velocity of elec-

trons, and the energy of the electrons. The moments of the Boltzmann equation are generally

written in terms of the averages which emphasize their macroscopic viewpoint.

-- The continuity equation has been mentioned previously in some detail, but will be written

3 here in terms of the coordinate space divergence of the electron flux:

I 
- V,-nv+S-L (17)

dt

3Assuming that the plasma is spatially homogeneous, and rewriting the production and loss terms

as frequencies, Eq (17) becomes:

dn
== n (v i,. v 11,.) (18 )

The energy moment of the Boltzmann equation can be written as (4:111)

an <_ > d

at +V n<vE>-Fen<v> = <dnC>. (19)
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where F is the force on the electron. The second term in this equation can be zeroed due to

homogeneity. The first term can be expressed as two terms:

Ia a < E> anI <E> - n t (20)

The third term in Eq (19) can be written as

I
Fn-<v> = eEn.<v> = J-E (21)

Using Eqs (18), (20), and (21) the erirgy moment of the Boltzmann equation takes the form

JE = + < , > n (io -IO. ) - 0n a (22)

IWhen a self-similar form of the solution to the Boltzmann equation has been achieved

through the iteration method previously outlined, the last term above will vanish. Thus, the

power going into the discharge, J • E, will be balanced by the sum of the inelastic and momen-

tum transfer losses contained in the collision term (M..), along with the second term on the right

hand side. This term represents the energy lost in bringing the secondary electrons produced in

ionization up to the average energy of the distribution, as well as a correction factor caused by

the loss of electrons through processes such as attachment, diffusion, and recombination.

Eq (22) proves to be very useful in describing the conservation of energy in the plasma dis-

charge. This principle will serve as a chief diagnostic tool in determining whether each of the

electron interactions considered is correctly incorporated into the solution method.

I
I
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External Sources

In order to study the plasma within a hydrogen multicusp discharge, excimer laser, or electron

beam assisted discharge, the external source of electrons must be included into the solution

method of the Boltzmann equation. Following closely the work of Rockwood, A.E. Greene and

C.J. Elliot (6) developed a very similar method of solution for the specific application of the

electron beam pumped plasma of an excimer laser. In their development of the equations that

describe the physics involved, they included the source term of the e- beam, as well as any loss

terms that were considered (in this case, recombination was considered to be the dominate loss).

In order to include these terms, reconsider Eq (3) with a non-zero source and loss term. Under

such conditions, Eq (23) is iteratively solved until convergence.

n'(t + At) = (I-CAt)-'( n(t)+ SAt) (23)

The source term here represents the value of the source at each of the energy bins along the

energy axis. For an electron beam with a sufficiently narrow energy spread, this vector will con-

sist of zeroes everywhere except at the energy bin containing the e- beam.

In modeling a magnetic multicusp discharge in hydrogen, Bretagne (3), et al, has developed a

code that also models a source term within a plasma. Their method of solution again follows that

of Rockwood, with the inclusion of the source term and a loss term. The dominate electron loss

processes in this case were assumed to be recombination and diffusion to the walls of the device.

The solutions obtained by Bretagne were for the inclusion of an electron source at 90 eV in

hydrogen. This is high when the mean electron energy is of the order of 5-10 eV.

In order to carry out the calculation of the distribution of electrons to these higher energies,

Bretagne adopted a non-uniform differential energy element. In this scheme, the energy widths

were allocated logarithmically, increasing with increasing energy. Using this method, it is

assumed that the distribution changes most rapidly at the lower energies where the energy bin

18



widths are small, and less so at the higher energies where the bin widths are large. Ideally, what

is required in a solution method is the allocation of a denser mesh of energy bins in the vicinity

of inelastic process, since this is where the electron distribution will change most rapidly. This is

due to the depleting effect that such a process imposes on the distribution as a result of the

energy loss associated with the inelastic process. The energy loss of an electron involved in such

a collision would be the threshold energy of the associated cross section.

While Bretagne's method could work well for hydrogen, in which most of the inelastic pro-

cesses occur at energies which are relatively low (0.5 - 12 eV) compared to the energy of the

source, it would seem to lack the flexibility needed to study other gases, such as the rare gases, in

which inelastic processes can occur at energies of 20 eV or more (as in the case of Helium). In

such a case, it may be possible for the energy bins to be too wide at these higher energies,

thereby rendering invalid the basic assumption used in the finite differenced approach.
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Having reviewed the theory behind the basic Boltzmann equation and the computational

method utilized in determining its solution, the specific requirements of the plasma devices under

consideration need to be addressed. These items are the processes of electron attachment and

electron - electron collisions along a non-uniform energy grid, electron beams, and methods of

dynamically allocating a non-uniform energy grid. In addition, the theory of steady state nega-

tive mobility is addressed.

Attachment

The process of electron attachment is very important in the study of certain plasma devices,

particularly excimer lasers. These devices are at the forefront of technology in the efficient pro-

duction of UV and near UV power (18:346). In electron beam pumped excimers, it is the attach-

ment of electrons to the halogen that forms the negative ion used in the reaction process

(18:348):

Ar + F + Ar -* (Ar+F) + Ar (24)

Thus, in e- beam pumped excimers, the process of attachment serves as an essential ingredient in

the production of the excited state. However, this is not the case in discharge pumping (18:349):

Ar+F 2 -- (Ar+F)" + F (25)
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I
Here, the attachment process serves, at best, only as an auxiliary pumping channel. The benefits

of the production of ionic Flourine are countered by the detachment process, which can lead to

an unstable discharge, as pointed out by Verdeyen (18:349). So then, no matter what the pump-

ing mechanism, electron attachment is an essential consideration in the analysis of the excimer

laser.

The attachment process is taken into account by adding to the collision term of Eq (4) the

attachment rate:

- -1L.c = -nNv(-)OY.Ich(e) (26)

This attachment rate can be easily incorporated into the finite differenced method of solution as

part of the C matrix of Eq (9). The loss of electrons from the system involves a corresponding

loss of energy. This energy loss, unlike those associated with ionization and excitation, is not

I associated with a fixed threshold value. Rather, the energy loss in the attachment process can be

I any energy within the domain of the attachment cross-section. The electron that undergoes

attachment in energy bin k will lose an amount of energy equal to the center of bin energy for the

k& bin. Additionally, in order to achieve an energy balance once the steady-state (or self-similar)

form of the solution has been established, a correction term for the electron loss must be taken

Iinto account, as shown in Eq (22).

Eq (22) can be rewritten slightly, showing explicitly the balance between the energy into the

discharge and the various inelastic processes, along with momentum transfer losses:

J. E = MT+((,,,vi..)+< >vi,,)+

(< I, Vo,, > - < E > v 1 + < E .. v ,c > - < Eexvm > (27)

21



Investigation into Eq (27) reveals several interesting cases. If the attachment frequency is

constant, then the average energy of the electron distribution is exactly the same as if there were

no attachment present. The presence of the constant attachment collision frequency would

deplete a constant percentage of electrons from each energy, thus the form of the distribution

would remain the same as if attachment were not present. The total number of electrons would,

of course, be less with an attachment process.

Consider the case of an attachment frequency which increases with energy. Here, the attach-

ing process would favor the high energy electrons over the slower ones, thus depleting the disui-

bution at the higher energies. The result would be an EEDF with a lower average energy.

Finally, consider an attaching frequency which decreases with energy. In this case, the

attachment process would tend to deplete electrons at the lower energies, resulting in a distribu-

tion which would have a higher mean energy than otherwise.

Steady State Negative Mobility

It is this last attachment case which forms the origin for the possibility of a plasma discharge

with a negative steady state total electron mobility. In general, the mobility can be expressed as:

Vd (28)

where E is the externally applied electric field, and vd is the drift velocity. Using the classical

two term spherical harmonic expansion with Eq (13) for the drift velocity, along with f, given by

(10:471):
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A - EDf, 1(29)
f = N at a. + 57 , (29)

where o, is the inelastic cross section for process h, the mobility can be rewritten as (15:1594):

= ,'FCNf,(E) d E (30)

0

It has been assumed that the sum of the inelastic cross sections is much smaller than the cross

section for momentum transfer. Eq (30) can be integrated by parts, with the integral term

becoming:

- - = de = C (31)
00

The first term on the right hand side is zero. The evaluation of this term at infinity is zero due to

the nature of the distribution function in that limit, and the evaluation at the lower limit is easily

handled remembering that the cross section is finite at zero energy. Thus, a criteria for negative

mobility is established:

da> (32)

Graphically, this criteria can be envisioned by drawing a line from the origin to the q,() at a

particular energy (Figure 1). If the slope of the momentum transfer cross section at this energy is

greater than the slope of the line drawn, then the criteria for negative mobility is met. It is seen

that this criteria is met by Argon in the energy range of approximately 0.3 to 10.0 eV.
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Figure 1. Ar momentum transfer cross section (21:1543)

An ex.ellent description of the physical process at work in a discharge with a steady state

negative mobility is given by Rozenburg, et al (15:1594). Briefly, however, it is the presence of

an attaching cross section at low energies which can lead to the effect. L the electron distribu-

tion is shaped such that the majority of the integration of Eq (30) is carried out in the energy

range over which Eq (32) is valid, then the mobility will be negative. Electrons travelling

against the direction of the external electric field will tend to gain energy from the field. How-

ever, this energy gain will be transfered to the gas molecules through elastic collisions rather

quickly, because the momentum transfer cross section increases rapidly with energy. Thus, these

electrons will eventually end up with a velocity component in the direction of the field, at low

fields. The electrons originally travelling in the same direction as the electric field will slow

down due to the force of the field and will lose energy. If a large cross section for attachment is

present at the lower energies, then there will be a large probability that the electron will be lost.
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Additionally, since the electrons are slowing down, they will undergo fewer and fewer elastic

collisions with the gas molecules, thus they will not tend to assume a spherical velocity distribu-

tion. These two processes will compete with one another, and conditions may be reached

wherein the electrons will have a mean velocity component in the direction of the electric field,

and therefore have a negative mobility.

Electron-Electron Interactions

The effect of electron-electron collisions in a plasma is to drive the distribution toward a

Maxwellian (4:66). This effect is particularly important for discharges with high fractional ion-

ization, and low E/N values (14:2350). Unlike the inelastic collisions that are incorporated into

the C matrix of Eq (9), the electron-electron interactions are nonlinear and therefore

time-dependent. Being described by the coulomb collision integral, the effect of a collision

between electrons depends on the entire distribution of electrons in energy space. This nonlinear

interaction is incorporated into the solution method by casting this coUision integral into the

energy space flux divergent formalism. In doing so, the two physical properties of conservation

of particles and energy must be ensured. Additionally, the electron - electron collisions must

tend to drive the distribution to a Maxwellian over time, reaching a Maxwellian in the steady

state when only electron interactions are considered.

The recasting of the collision integral into the flux divergent formalism is accomplished by

the following steps, and is developed in detail in Appendix B. Eq (7), which represents the

Fokker-Planck approximation to the electron-electron collision integral, is finite differenced

using a simple backward difference scheme. In doing so, the effect of the non-uniform energy

axis is taken into account by defining the average electron number density between two adjacent

bins as
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Akln. + I + & k + 1n,,

nk,+I/2 =ck + k 1 k+1 (33)

while the term representing the energy space divergence of the electron number density becomes

a nk+II 2 - k+ I-k (34)
F + I - Fk

Notice that with constant energy bin widths, these representations will recover the usual expres-

sions for the given quantities.

Next, the integrals contained in Eq (7) are replaced by summations over the entire energy

range, and like terms of the electron number density are grouped together and expressed in the

same formalism used previously to describe the field and elastic driven fluxes found in Eq (8).

Eq (35) and Eq (36) result Bk + 1,1 , the coefficient of nk + , represents the downflux of electrons

going from energy bin k+l to k by electrons going from bin I to 1+1. The coefficient of nk -i,

which is Ak_ -,, represents the rate of upflux of electrons from k-I to k, by electrons going from 1

to 1-1.

an, = a k_ in, _ + b'k + nk + I - (a'k+ b'k)nk (35)

where the coefficients are expressed as:

a = Ak_,tnl b1 l = Bk+l ,nl (36)

In order to ensure particle conservation, boundary conditions are applied to Eq (35) such that

particles cannot be lost from the energy grid during the iteration process used to determine the

solution. This condition, which requires that electrons cannot be demoted from the lowest

energy bin, nor can they be excited from the highest energy bin, is expressed mathematically as:
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AN.1 =Bl, =O forallle[I,N] (37)

Energy conservation requires that

d d N
dfe()dc I d N tA- 0 (38)

dtdtklk =
0

Carrying out the algebraic operations required in Eq (38) results in

= Al A (39)A' + A~k_-I

In the steady state with a Maxwellian distribution, the promotion and demotion interpretation

for the Ak,'s and Bk,,'s leads to the following balance between the two:

Ak,,nkn1 = Bk +,lI1 +nl-, (40)
k+1 - Ek+t-

This expression states that the rate of electron promotion from energy bin k to k+1 by elec-

trons going from bin I to I - 1 is balanced exactly by the rate of demotion of electrons from bin

k+l to k by electrons going from I - I to 1. Using Eq (38) and the expression for a Maxwellian

energy distribution, Eq (40) can be expressed as:

A k =l - - - - 1 
= Ak 

+l){1 ( e _ 1 ) 12

([ ( k + I~ ) -k (z k - 1

xex , +A&1. 1) - (41)
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where T is the electron temperature. The proper construction of the A matrix will ensure that the

3 distribution will be a MaxweUian in the steady state. The use of Eq (40) guarantees that energy

will be conserved in the closed system, while the boundary conditions defined by Eq (38) will

I ensure the conservation of electrons.

I
Variable Energy GridI

The variable energy grid is envisioned as not only a method to increase the energy range of a

calculation, but also as a means of increasing the accuracy of transport parameters and kinetic

rates over the uniform grid. By increasing the number of energy bins, while holding the maxi-

mum energy constant, the finite differenced representation of the flux terms becomcs a better

I approximation to reality, thus increasing the accuracy of the computed distribution to the actual

distribution. In so doing, it is expected that the resultant transport parameters and kinetic rates

computed from the distribution would also increase in accuracy. This trend has a practical limit

3 however. As the width of the energy bin becomes sufficiently small, the computer roundoff

error will begin to accumulate and result in significant deviations from the true values.

3 When considering a non-uniform energy grid, the question that naturally arises is how this

mesh should be allocated. In the electron beam sustained plasma discharges, the logarithmically

allocated axis has been used by Bretagne, which seems to be a useful method for H2 and perhaps

other molecular gases. However, it may not be the logical choice for gases with inelastic pro-

cesses occurring at higher energies than those present in H, such as the rare gases. This is espe-

3 cially true if the ionization and excitation rates of such gases are of interest. Additionally, this

method will indiscriminately allocate an energy axis with no regard as to the inelastic cross

I sections present. It would seem that the logarithmic method is used primarily for its ease of

3 implementation.

I
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A better method of allocation would logically take the inelastic cross sections and threshold

3 energies into account. These inelastic processes would decrease the distribution very effectively

at the threshold energies and beyond, thus the increased bin density at these energies would serve

to inc-ease the accuracy of the finite differenced representation of the differential equation.

3 Since average energy and drift velocity are parameters that are mostly dependent on the bulk of

the distribution, it is essential that the mesh used accurately calculates this region of the EDF.

3 Additionally, excitation and ionization rates are parameters that mostly depend on the tail of the

distribution, therefore it is important to be able to accurately calculate this portion of the EDF as

I well. The best possible mesh to calculate the former is clearly not the best to calculate the latter.

The challenge is to be able to calculate both regions of the distribution with greater accuracy than

a uniform mesh of equal grid points.

3 One method that can be used to define an energy grid has been used by Nickel (11: 18) to

calculate the radiation from various spectral lines. In his method, a function F is defined by the

-- relation

- fG(E)ds

F(C) = , (42)

3 f G(e)dc
0

where G is some function yet to be determined, but which depends in this instance on the cross

sections of the elastic and inelastic processes. Notice that the value of F can range between the

limits of 0 and 1. The energy axis is divided into N equally spaced points, and the value of the

function F is computed at each point. These points are then graphed versus energy as shown in

Figure 2, where a 10 point uniform grid has been mapped onto a 10 point variable grid by using

the Maxwellian distribution as the function G. The y axis, which ranges from 0 to 1, is also

divided into N equally spaced points. Each of these points is then projected horizontally onto the
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I
graph of F vs energy until intersection, and then down vertically to the energy axis. These inter-

I sections along the energy axis now define the new energy axis along which the solution to the

Boltzmann equation will be computed. It is clearly ;een from Eq (42) and figure 2 that in energy

I regions where the function G, and consequently function F, changes rapidly, the mesh of energy

bins will increase. On the other hand, in regions where F changes little, few energy bins will be

allocated. This is precisely the allocation scheme that is required, the only question being what

does function G look like? Notice that if the function G were defined such that F was a straight

line, then the mapping would be uniform to uniform.I

0.9............. ............

0.8........................... ... .Function F
0.7........-

0.6 . .......................

0.5- .. .................

0.3 - '-

Distribution Function
0.2. 

0 1 2 3 4 5 6 7 8 9 10

Energy (arbitrary units)

Figure 2. Maxwellian energy distribution with electron temperature of 2 units and the corre-

sponding function F, where G is given by the number distribution

The choices of the function G can range from the electron distribution itself to some moment

of the distribution, such as the energy moment. Unfortunately, these energy bin allocation func-

I tions require the distribution function itself, and this is the solution of the Boltzmann equation.

3
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Thus these allocation choices require either first solving the Boltzmann equation on a uniform

I energy grid, and then re-solving it on the non-uniform grid, or accepting some assumptions that

would allow the calculation of an approximation to the electron distribution quickly, without the

need to iterate until convergence. The former choice is not ideal, due to the time requirements.

Thus the latter alternative becomes the more attractive method.

Using the commonly accepted two term spherical harmonic expansion, the electron distribu-

I tion can be represented as f =f. +flcos(O), where f, and!f are the solutions of a pair of coupled

differential equations (10:471):I
E/N

-(f)+ XQhf,

- "n8 (2Q°) +XQA(E')f°(E) (43a)

I a-

where Q is a cross section and c' = e + Se. The subscript h denotes an inelastic process, while

the subscript r denotes weighting each momentum transfer cross section by the mole fraction of

the gas. The subscript m denotes the momentum transfer cross section weighted by mole frac-

tion and molecular weight for the gas. Following Holstein's example (8:372), Eq (43a) is inte-

I grated with respect to energy, then Eq (43b) is substituted into Eq (43a), and again integrated

with respect to energy. The pair of coupled differential equations now becomes a single implicit

Iintegral equation:

I
I
I
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oe)= exp- ( x (x)((x)dx
0

+ Q (y)fo(y)ydydx] (44)

0 C£

where Q, is the sum of all cross sections. Now, if some simplifying assumption can be made to

eliminate f. on the right hand side of Eq (44), then this function could be calculated quickly and

may serve as a good choice to be used in Eq (42) in defining a non-uniform energy mesh. If it is

assumed that f. remains relatively constant over the interval e to E + A£*, then this simplification

will occur. The result is an equation for the electron energy distribution function which is a

function only of energy, E/N, gas type, and the cross sections for the gas. Since these are all

I parameters that are known prior to the start of the numerical calculation of the solution to the

I Boltzmann equation, this function can be used quickly in defining a new energy grid through Eq

(42).

Once the new energy grid has been established, and the solution to the Boltzmann equation

computed along it, some criteria must be used by which the utility of the non-uniform method

may be evaluated. Analytic solutions to the Boltzmann equation exist for the special cases of

constant momentum transfer cross section and for constant momentum transfer collisional fre-

quency. In both of these cases, any inelastic cross section, Qh, has been zeroed out. Therefore

I the double integral on the right hand side of Eq (44) vanishes. The remaining integral can be

handled analytically, allowing calculation of such parameters as average energy and drift veloc-

I ity through the use Eq (15) and Eq (13) respectively. Therefore, in these cases, the average

energy and drift velocity calculated using uniform and non-uniform energy grids can be

compared to the analytically determined ones. However, since the primary utility of the non-

i uniform energy grid most likely lies in the case of when inelastic cross sections are included, the
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Ianalytic calculation of these parameters is precluded. In this case, a good figure of merit is a

Icalculation of the parameters carried out using a uniform energy grid consisting of a sufficient

number of points such that the calculated parameters do not change much.

I
Electron Beams

I Electron beams can be included into the method of solution by returning to Eq (9). If the

source and loss terms in Eq (3) are non-zero, then Eq (9) becomes:I
I dn(45)dt , Ct'n, + S - L (45)

dt

I where the units of the source term S and loss term L would be cm- 3s- . Applying Euler's formula

for the derivative and solving for n(t + At), the following is obtained:

I i'(t +At) = (I-CAt)- {(S - L)At +n'(t)} (46)

I The solution to the Boltzmann equation is found at each time interval t + At, and the self-

similar solution is found by iterating Eq (46) until the programmed convergence criteria is met.

In analyzing the effect of only the e- beam on the distribution, it is desirable to zero the elec-

tric field. Doing so with the finite differenced equations used in previous codes created numer-

ical instabilities arising from the recoil flux term, J,, (6:2948). In those representations for the

flux, the reduction of the electric field below some minimum value allowed promotion and

demotion rate coefficients (a.'s and bk's) that were almost all negative at some values of energy.

With no forces acting on the closed system of electrons, what is required of the electron energy

I
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I

distribution is to obtain a Maxwellian whose average energy is 1.5 times the gas temperature.

I The finite differenced representation for the recoil flux divergent term as achieved in Appendix

A preserves this property, thus maintaining numerical stability over a range of temperatures.

The source term S can be written as

I
I

S =(47)
Ve

I where V is the plasma volume, and I is the current at the source energy. Eq (47) is written for a

I point source in energy. If a source is used that is broad in relation to the energy bins around it,

then this term would need to be spread out into several bins.

IThe addition of the electron beam source also requires its inclusion into the energy balance

equation Eq (22), where now the J • E term is replaced (or augmented) by the power into the dis-

I charge by the e- beam, namely:

I
I

P, bem =  -e et-, (48)

where the units of this power term are eVs-'cm-3 , a power density.

The effect of having a source of electrons at a high energy is to produce ionization and excita-

tion of the gas molecules. These processes all constitute losses of energy for the source elec-

trons, thus they will be displaced down to the lower energies by an amount equal to the threshold

I energy of the process. If the source is at large enough energies, these electrons can be displaced

along the energy grid many times before elastic collisions with the gas become dominate. The

interactions between the ionizing electrons and the secondary electrons produced during ioniza-

tion gives rise to what Bretagne (1:1119) calls energy sharing. In the present Boltzmann code,

the secondary electrons are all assumed to appear at the lowest energy bin, while in reality some
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energy is shared between it and the ionizing electron, resulting in some secondary electrons

appearing at higher energies. This energy sharing tends to smooth the distribution when com-

pared to the classical treatment of ionization that neglects it. However, according to Bretagne,

this classical treatment of the ionization process can be used to accurately model the electron

beam sustained discharge as long as 1) low energy inelastic process are not dominate and 2) the

energy of the source is not too high ( E, < about 100 eV) (1:1201). The first condition can

readily be met in the rare gases, however in molecular gases cam must be taken to ensure that

this is true.
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IV. Computational Method

Program Structure

The Boltzmann code developed, Megaboltz, solves the time-dependent Boltzmann equation.

Output consists of the EEDF, the kinetic rates for the inelastic processes considered, and the

transport parameters. An energy balance, which is the primary compututationa diagnostic, is

also a monitored output. A user's guide to the code is included in Appendix C, however the

principal routines will be briefly outlined in this section.

The user can select from a menu regarding the type and amount of each gas present in the

plasma, the electric field to neutral number density ratio (E/N), the gas temperature, pressure,

and electron number density. Additionally, the user can choose to see or plot the interpolated

cross sections for any of the kinetic processes, as well as turn on/off the electron-electron colli-

sions and electron beam. The source energy of the electron beam is also set by the user on the

menu. Finally, the energy grid is selected, whereby the number of energy bins along the energy

axis and the maximum energy are defined. This grid can be constructed in a number of ways:

uniformally, logarithmically, or dynamically. When the energy grid is constructed dynamically,

the elastic and inelastic cross sections will have some influence on the location and density of the

energy bins.

The value of the independent variable used in the numerical integration of the Boltzmann

equation is also set in "input.com". This number represents the time step of integration used in

Eq (11) and Eq (12), and would typically be at least as small as the time scale for the dominate

electron collisional process.
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I

In order to properly invoke the code, the user must define the physical situation of interest.

This is done by editing the file called "input.corn". This file will be read when the program is

run, thus it must be edited before starting the program. This file defines the basic problem to be

solved.

After the input file "input.com" is read, the code will look for the cross section files of the

gases that were selected. These cross section files are external to the code, and they must be

formatted according to Appendix D. These files contain cross section vs energy data stored as

tables, along with some other required information. For each type of inelastic process, a number

called NSTATE is read, which tells the code the ratio of the gas molecules that are in the lower

state of the process the cross section represents to the total number of gas molecules. Excitation

or ionization from the ground state would have NSTATE values of 1.0. An excitation from some

excited state to a higher state would have an NSTATE value of between 0.0 and 1.0. By assign-

ing each process a separate NSTATE value, any of the inelastic processes may be turned on or

off. For excitation processes, an additional variable is read which defines the ratio of the

molecules in the upper excited state to the number in the lower state, which may or may not be

I the ground state. This value, NSTAR, is used to compute the superelastic rates.

I Once all of the gas cross sections are read in, the energy axis is defined according to the

user's choice in "input.com", and the elastic and inelastic cross sections are interpolated from the

data tables at each energy point. Next, the matrix C as used in Eq (9) is constructed. The ele-

ments of this matrix include all excitation, ionization, superelastic and attachment processes.

i Each element has units of s', and is determined by how the particular process effects the flow of

I electrons in energy space at each bin energy. Since the number density of electrons, nk, is a

quantity that is defined at the center of energy bin k, the coefficients of nk are also constructed to

be center of bin values.
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Impact excitation and ionization will cause an electron with energy E > AF,. to lose an

amount of energy equal to this threshold value. Thus, an electron will be lost out of the higher

energy bin, reappearing at the bin corresponding to E - AEft., as outlined by Eq (49).

=kk -NNN (-r)V(-,) (49)

where s is the gas type, j is the process, k represents the energy bin, rm is the bin offset corre-

sponding to a threshold energy of AE,. N, is the NSTATE value for process j, and N, is the num-

ber density of gas molecules for gas type s. The center of bin energy value for bin k is expressed

as 4k. The first term on the right hand side represents gains into bin k due to electrons

undergoing collisions at energy k+m, while the second term represents excitation losses out of

bin k.

Superelastic collisions are handled similarly, except now the addition of electrons at energy F

are from energy e - Ae,. The electron undergoing a superelastic collision at energy c will be sent

to £ + Ai;. The superelastic matrix elements are assigned by

Cj~km N*N - AE-

C k= -N'Nf ( .ik + ejCE (50)

where k - nm is the energy bin corresponding to e. - he,, and detailed balance has been used to

express the superelastic cross section in terms of the excitation cross section.
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In the process of attachment, the electron is lost from the system - they do not reappear any-

where so far as the energy distribution is concerned. This loss of electrons is assigned to ele-

ments in C by

Ca -NN (E V( ) (51)

Once all of the processes have been loaded into the C matrix, the inverse of the (I-Cdt) is

calculated. In the present version of the code, this matrix inversion is carried out by the IMSL v.

9.2 library routine LUDATF. This routine performs the matrix inversion using the L-U decom-

position method (12:31). As is reported by Seger (16:16) and Honey (9:118), L-U decomposi-

tion is generally preferable to other methods such as Gauss-Jordon, Gauss-Seidel, and successive

over relaxation (SOR) in terms of both speed and accuracy. In the L-U decomposition method,

the inverted matrix is actually two matrices, one upper triangular (U) and the other lower triangu-

lar (L), stored as a single matrix. The new Z(t + At) vector must be computed by forward substi-

tution with the L matrix, and then back-solving with the U matrix. Once the (I - CAt) matrix is

triangularized, which only needs to be done once, then the forward/backward substitution is

carried out fairly quickly.

Each time the new '(t -At) vector is computed, it is tested for convergence with the previous

vector, ir(t). This convergence test is accomplished at each energy value, and each number den-

sity vector is normalized to its respective total electron number density. Once the convergence

test is passed, or if the maximum number of iterations is reached, the last Z(t + At) vector

computed is passed to a routine which calculates the excitation, ionization, superelastic, and

attachment rates. These rates are calculated by
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fn,(e)a(e)V(c)dF_

R= 0

f nede

N

k=1 (52)
net0t

where the units nn the raetes are cm3/s.

Energy Balance

When the rates have been calculated, the final electron distribution is passed off to the energy

balance routine. This routine computes the energy into the discharge, and the energy losses from

all elastic and inelastic processes. The balance of energy inputs with loss mechanisms serves as

a primary computational diagnostic for the acceptance of any data run. The energy sources con-

sist of the electric field and/or the electron beam. The electric field's energy contribution into

the discharge is just J - E. This can be written as

dE - kA E k- l)nk (53)

dt k

where a- represents the flux of electrons through energy space from energy Ej to energy E. + due

to the applied field, and defined as in Appendix A. Similarly, b represents the flux of electrons

from e. to _ -, due to the applied field. The separate 14 's illustrate the effect of the non-

uniform energy axis. The first term reflects the energy gained by electrons which have velocity

components anti-parallel to the electric field, therefore accelerating to higher velocities. The bk
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term reflects the slowing down of the electrons which have some velocity component in the same

direction as the field. If more electrons speed up than slow down, then the i'jed .. ave a net

positive input of power into the discharge. If more electrons slow down, then the field will gain

energy from the electrons. This last case is predicted from the effects of a ir-z aiachment cross

section at low energy, and a momentum transfer cross section that increases with energy

(15:1596). The energy into the discharge is given by Eq (53).

The energy losses consist of elastic and inelastic collisions. The rate of energy lost in the

elastic collisions can be written as

dE
"-I = -j[(ak--a)AEk-(bk-bk)A~k-]nk (54)
dte k

The excitation loss is expressed as

dE
-- = - X N tNJnYj(Fk)V(-k)Ae , j (55)
dt sj'k

where AE is the excitation energy threshold for process j of gas s and Ni is the ratio of the number

density of gas molecules in the lower state of process j to the number density in the ground state.

Thus, for ground state excitation this number would be 1.0, whereas for excitation from some

excited state it would less that 1.0. The ionization energy loss is similar to the excitation loss,

with the additional term reflecting the energy lost in bringing all the secondary electrons up to

the average energy of the distribution. It is expressed as
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I

dE =~N A

dtllan S j Nn J(k(ek)AEJj

k

where the second rate sum is carried out over all ionization processes j.

i The superelastic loss is really an energy gain, and can be written as

I ds uE,
S~ jkl k(--1" +ASjV

NN ) (56)

where the product NNum.N is simply the number of molecules in the excited state of process j

belonging to gas s.

The attachment energy loss is

i dE
dE -ac N NNjnk((k)V(F-k)Fk

dt [atlah Xk

F-,n,i+ nk X..,'NJN n j-,)( )(58)
kI fl sqj,k Njnlk(k)V(Fk) (8

where the second rate sum is carried out over all attachment processes j. The second term in Eq

(58) represents the correction to the energy lost in attachment due to loss of electrons, as Eq (22)

i suggests.

i
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I Transport Parameters

I
The calculation of the transport parameters is accomplished after MEGABOLTZ computes

I the energy balance. These parameters are drift velocity, average energy, characteristic energy,

and the free diffusion coefficient. The drift velocity Eq (13) can be expressed in terms of the rate

of energy gained by the electrons from the electric field (14:2350):

I
Vd = En (59)IE Ynkk

3 where t9 was calculated in Eq (53) as part of the energy balance. The diffusion coefficient is

I calculated with Eq (14) as

If I ( _)/21 kf _3 mJ k qYe~ k)

I
where fk = (60)i E n,

k

Once the drift velocity and diffusion coefficient are calculated, then the characteristic energy

can be calculated by Eq (16), which can be expressed asI
EDfE, -k (61)

Vd

since I.t = vd/E

UThe average energy is calculated by
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<E> - Y, (62)

k

3- Once these parameters are calculated, they can be compared to experimental data. Very

often, it is through just such a comparison that a particular gas' cross section that" s unknown in

-- some energy range is refined or even defined altogether. It is these transport parameters that link

3- the distribution function to observables in the real world.

II

I
I

I
m

I
I
I
I
I
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I V. Analysis and Discussion

I

Validation with Non-Uniform Energy Grid

I
The extension of the energy range of the solution is critical in being able to include sources of

-I electrons in the computation of the distribution function. This energy extension involved re-

3- deriving the field and recoil electron flux terms for a non-uniform energy grid. Several methods

were used in order to validate the Boltzmann code with the non-uniform energy mesh. First,

3 calculations of <E> and Vd using a non-uniform grid were compared to calculations using a uni-

form grid for the case of no inelastic processes and VMT. =constant. Since analytic solutions to

I the Boltzmann equation exist for the case of VM.T. = const, these parameters could then be

compared to the expected analytic values. Secondly, c,, v,, and ct/N were calculated on both

the uniform and non-uniform energy grids and compared to experimental data for several gases,

3- both molecular and rare. Finally, with the electric field turned off, the new finite differenced

representation for the momentum transfer recoil term (Eq (A-17a) and Eq (A-17b)) was tested

I for convergence to the proper value of <E> for several gas temperatures.

In the validation of the non-uniform energy grid, some method must be used whereby the grid

is allocated. For this analysis, the non-uniform grid was established by using a pseudo-

logarito,1 -ic method. This method defines the width of each energy bin by the relation

AUk  = Ln(k) +Emnj (63)

where the variables Emi and a were defined so that the maximum energy of the non-uniform

energy grid was approximately the same as the maximum energy of the uniform grid. Thus, the
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I energy at each bin of the non-uniform grid was established by summing the width of each bin

below it. When any comparisons were made between transport parameters calculated using the

uniform and variablb energy grids, the number of energy bins used in each method was constant.

I
Transport Parameters for Constant Collision Frequency

3- Since an analytic solution to the Boltzmann equation exists for the special case of a constant

momentum transfer collision frequency, this condition was used in order to compare the calcu-

I lated average energy and drift velocity to the analytically determined ones. The analytic values

of <E> and Vd were determined by using Eq (44) with VM.T. = 3.05 x 1012s-1 and no inelastic

cross sections in order to derive the reduced electron distribution function, fo(z). From this func-

tion, the average energy can be determined by Eq (15). The drift velocity is determined by using

fo(e) in Eq (44b) to get f1(e), from which Vd is calculated by Eq (13). The analytic expressions

3 derived as a result are

< <E> = 4.1318x10-2(E/N) 2  eV (64a)

3 Vd = 1.412x10 5 (E/N) cm/s (64b)

3 Table 1 shows the inparisons between <E> calculated with a uniform and variable mesh to

the analytic values. The energy axis was divided into 150 bins, with the maximum energy vary-

3 ing from 2 eV at 2 Td, to 200 eV at 20 Td. For the variable energy mesh, Emin and a were

varied so that the maximum energy was approximately the same as in the uniform case. The

U maximum energy for the calculation was determined by requiring at least a six order of magni-

3 tude drop in the distribution at the maximum energy, but not more than a ten order of magnitude

decrease. Limiting the drop to less than ten orders of magnitude will prevent any numerical

4
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Ierrors arising from computer roundoff. Requiring at least a six order of magnitude drop will

ensure that nearly all of the electrons are accounted for in the calculation of the transport parame-

ters.

I
Table 1

<E> (eV) for VMT. = Constant, Calculated for Uniform vs Non-Uniform Energy Grid

E/N (Td) Analytic Uniform % Error Non-Uniform % Error

2 0.165 0.166 0.606 0.167 1.212

4 0.662 0.665 0.453 0.667 0.755

6 1.487 1.489 0.135 1.494 0.471

1 8 2.644 2.651 0.265 2.658 0.530

10 4.132 4.155 0.557 4.168 0.871

12 5.950 5.983 0.555 6.003 0.891

14 8.098 8.139 0.506 8.174 0.939

16 10.577 10.630 0.501 10.680 0.974

18 13.387 13.460 0.545 13.510 0.919

20 16.527 16.610 0.502 16.680 0.926

I

In every case, the code has over-estimated the average energy. The values calculated with the

I non-uniform axis are consistently higher than those calculated with a uniform grid. However, it
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must be remembered that the variable energy grid used in these calculations has been somewhat

arbitrarily constructed; that is, each energy bin width was assigned according to Eq (63). No

attempt was made to optimize the grid for the calculations of drift velcity or average energy.

Table 2 shows a similar comparison between the drift velocity calculations with the different

energy grids compared to the analytic values for different E/N values. The calculations at each

E/N were accomplished using the same grid mesh that was used previously in the <E> calcula-

tions.

Table 2

3 Vd (x10 6 cm/s) for VMT = Constant, Calculated for Uniform vs Non-Uniform Energy Grid

E/N (Td) Analytic Uniform % Error Non-Uniform % Error

2 0.2824 0.2817 0.248 0.2813 0.390

- 4 0.5648 0.5633 0.266 0.5617 0.549

3 6 0.8472 0.8413 0.696 0.8413 0.696

- 8 1.1296 1.124 0.496 1.123 0.584

10 1.4120 1.409 0.212 1.406 0.425

12 1.6944 1.691 0.200 1.687 0.437

14 1.9768 1.971 0.293 1.966 0.546

16 2.2592 2.253 0.274 2.248 0.496

18 2.5416 2.535 0.297 2.529 0.496
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I The calculated results were consistently under-estimating the analytic values, with the uni-

form grid generally giving better estimations of the velocities than the non-uniform grid. Again,

no effort was made to construct an optimized energy grid is this case.

Figure 3 shows a comparison between the energy distributions calculated for the uniform and

non-uniform grids and the analytic distribution for an E/N of 4 Td. The electron distributions

I have been plotted as a reduced distribution (cm-3eV- 2) such that a Maxwellian will appear as a

I straight line when plotted on a semi-logarithmic scale. Plotted on this scale, there is very little

difference between each of the distributions. The dotted line represents the distribution calcu-

lated on the non-uniform grid, while the solid line represents the uniform grid calculation. The

dashed line represents the analytic distribution calculated under the identical conditions. Both of

I the calculated distributions over-estimate the analytic distribution slightly, illustrating the over-

estimation of the average energy.

1 E+1

1E+1
Uniform

1E+1 ......... Non-Unorm
1E+11 -

> 1E+1

'u 1E.7II+
SEi

1 E

IEI
0  1 2 3 4 5 6 7 8 9 10

Energy (9V)

Figure 3. He EDF at 4 Td: Uniform vs Non-Uniform
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I Figure 4 shows the percent error in the two calculated distributions as a function of energy.

This error is defined as (f, -f= )/f .x 100.

An over-estimation of the correct number density will result in a negative error, while an under-

j estimation will result in a positive error. At low energies, the non-uniform grid results in over-

estimating the correct values, while the uniform grid under-estimates the correct values. At

larger energies, both of the calculated distributions over-estimate the analytic result. In this

region, the non-uniform grid over-estimates the analytic distribution more than the uniform grid,

I leading to a greater calculated average energy for the former compared to the latter.

5.00

Uniform

-500 Non-Uniform

ua -1 .1:10

Energy (eV)

Figure 4. Error in Numerical Calculation: Uniform vs Non-Uniform

The finite differenced term for the momentum transfer recoil was tested for convergence to

the proper functional form. In order to do this, the electric field was zeroed, and the momentum

transfer collision frequency was held constant at the same value as that which was used pre-

viously. The maximum energy of the calculation was varied for each gas temperature such that

the distribution underwent at least a six, and not more that a ten order of magnitude drop between

50



the lowest and highest energies. The number of energy bins along the energy axis was held con-

stant at 200. With no external forces applied to the system of electrons, the distribution should

relax to a Maxwellian whose average energy is 3/2 the gas temperature. Table 3 illustrates the

results for a variable mesh grid.

Table 3

<E> (eV): 0 Electric Field, VM.T. = Const, Calculated for Non-Uniform Energy Grid

Gas Temp (K) Analytic Calculated % Error

300 3.876E-2 3.819E-2 1.471

600 7.752E-2 7.780E-2 0.361

900 1.163E-1 1.168E-1 0.430

1200 1.550E-1 1.560E-1 0.645

1500 1.938E-1 1.948E-1 0.516

Figure 5 shows the converged solution plotted as a reduced distribution for a T.. of 300 K. In

this case, ox was 0.0005 and Emin was 0.01 (Eq (63)).
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Figure 5. EDF Calculated on Non-Uniform Energy Grid for Tg. = 300 K, E/N= 0

Transport Parameters for Gases

Electron EDF's were calculated for Ar and H 2 using both a variable and uniform energy grid.

The resulting transport parameters were calculated in each case and compared to experimental

data as reported by Dutton (5). In the case of Ar, the parameters were drift velocity, average

energy, and a/N. The processes considered for the Ar calculations were momentum transfer,

ground state ionization, and three excited states, each from the ground state. The cross sections

for these processes are shown in Figure 6.
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Figure 6. Argon Cross Sections

Figure 7 compares the drift velocities to data gathered by Dutton (5). Although there is signifi-

cant scatter in the data, the calculated velocities follow the general trends in the data. The data

against which the calculated velocities are compared was measured by five different researchers,

with two of them causing the largest scatter here.
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Figure 7. Ar Drift Velocity vs E/N (Data from Ref 5:612)

Figure 8 shows a comparison between the calculated characteristic energy and the data, which

was also given as characteristic energy. Again, the general agreement is fairly good. A good

agreement between the calculated and experimental values of energy and vd indicate that the

bulk of the electron distribution has been accurately computed. This is due to the characteristic

dependence of both these parameters on the bulk of the electrons, or those electrons in the distri-

bution that are below the excitation and ionization threshold energies of the gas.
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Figure 8. Ar , vs E/N (Data from 5:65 1)

a/N is a parameter which is characteristic of the tail of the electron distribution. Thus, if the

calculated a/N follows the experimentally determined values, then confidence in that part of the

distribution governed by the ionization process is established. Figure 9 shows the calculated val-

ues of a/N and the experimental data. The calculated values were computed without any super-

elastic process, thus the slight under-estimation could be corrected by assuming some excited

state population ratio in the computation. This would allow the superelastic processes to drive

electrons out to the higher energies, thus increasing the ionization rate and thereby the a/N. This

under-estimation is also compounded by the nunicric ionization rate calculation method, which

in the code is a simple box integrator that steps backward. This backward stepping would under-

estimate the integration of the distribution with the cross section, thus under-estimating the ion-

ization iate, and therefore the a/N. This effect is especially prominent if the distribution falls off

rapidly with energy.
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Figure 9. Ar cnN vs E/N (Data from 5:724)

I The transport parameters calculated in H2 were drift velocity and 4. Figures 10 and 11 show

the cross sections used in the calculation of the transport parameters for molecular Hydrogen.

Figure 10 illustrates the momentum transfer, and ground state electronic and ionization cross sec-

tions. Figure 11 shows the five ground state vibrational processes. No superelastic processes

were used. The thre. hold energies for the inelastic processes in this molecular gas are in sharp

I contrast to those in the rare gases, such as Ar or He.

I
I
I
I
I
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I The drift velocities shown in Figure 12 follow the experimental data fairly well until approxi-

mately 30 Td, beyond which the calculated values are greater than the experimental. The veloci-

ties computed with the uniform and non-uniform energy grids are in close agreement throughout

the E/N range investigated, indicating that this error does not lie in the choice of energy grids

used.I
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Figure 12. H2 Drift Velocity vs E/N (Data from 5:618)

The characteristic energy is plotted in Figure 13. In this plot, the calculated aerage energy

has been multiplied by 2/3 in order to obtain an equal weighting with the data, which is given as

_ characteristic energy.

I
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Figure 13. H2 c4 vs E/N (Data from 5:655)

In comparing the transport parameters computed with the uniform and variable energy grids

for H2 and Argon, it appears that the computed data for the molecular gas is in better agreement

with the data than the rare gas. The calculated parameters for the rare gas generally diverges

much sooner. This result is probably due to the higher inelastic thresholds in Argon, at which

U point the logarithmic grid is becoming excessively large in accurately calculating the distribu-

3 tion.

I Validation of' Attachment Process

The process of electron attachment was validated by considering the effect that the process

would have on the electron distribution, as well as verifying the predictions made by Eq (27) for

several special cases. In every calculation, energy balance was considered to be the prime corn-
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I putational diagnostic, with the energy always balancing to within 0.1%. In this validation, the

calculations were made on a uniform energy grid of 150 bins, with a maximum energy of 20 eV.

Argon was used as the host gas, wherein an attaching cross section was added of varying magni-

3 tude and energy dependence, depending on the case. The same E/N value was used for each cal-

culation. The other processes considered were momentum transfer, excitation, and ionization.

3 Figure 14 shows the reduced distribution resulting from the inclusion of an attachment cross

section compared to ihe no-attachment case. For this case, the attachment cross section was con-

structed such that the attachment rate was constant, given as v., = 4.0 x 10-cm3s-'. The

rate was defined as v.h = a(E)v (-) [cm 3s-' ] at each energy. With a constant attachment

frequency, the rate at which electrons will be removed from each energy bin will be constant,

3 thus the distribution will assume the same form as if attachment were not considered. In as much

as the total electron number density is smaller in the case in which attachment is considered, a

I similar form translates into n1/n2 = constant. As expected, the form of the distribution remains

similar, although the distribution in which attachment was considered is several orders of magni-

tude lower than for the case of no attachment. The calculated average energy was the same in

I each case (3.285 eV), as Eq (27) suggests.

I
I
I
I
I
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-- Figure 14. Calculated EDF with a Constant Attachment Rate

Next, an attaching cross section was included such that the rate of attachment increased with

energy. The actual rate used rose linearly from 0.0 at 5 eV to 2.0 x 10-8cm 3s-1 at 20 eV. This

rate was given asv.,., = 1.0xl0c forE>5 eV [cm 3 s-'].

This cross section results in electrons at the higher energies having a greater probability of being

attached, and as Figure 15 shows, these are the electrons which have been preferentially removed

from the distribution. The average energy for this distribution was calculated to be 1.792 eV,

clearly indicating the loss of the higher energy electrons.
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_ Finally, an attaching cross section that decreased rapidly with energy was used. This cross

- sec.,on resulted in an attaching rate that also decreased with energy, from a maximum of

3= 4.0 10-" cm 3s-' at 0.01 eV to 0.0 at 2 eV. The EDF with and without attachment are shown in

Fig. :re 16. The loss of electrons at the low energies is readily apparent, and in fact, this portionIof ie curve would have a negative temperature associated with it. This form of the attaching

rat . will shift the bulk of the electrons to higher energies, resulting in an average energy (5.134

I eV that is greater than that calculated without attachment (3.285 eV).

I
I
I
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I Figure 16. Calculated EDF with an Attachment Rate Decreasing with Energy

I
Methods of Allocating Variable Energy Grids

3 Once the code has been validated with the use of a non-uniform energy grid, t&e natural q-es-

tion that arises is "what is the best grid to use?". A logarithmically allocated bin size is perhaps

- not the best choice for Argon, a rare gas with little energy separation between the inelastic

processes. This is evidenced by the disparity between the transport parameters calculated with

uniform and non-uniform energy axes. However, the use of the log grid with H2 appears to be

practical and results in transport calculations that are similar to those calculated with the uniform

grid. It would be advantageous if some method could be devised in which the non-uniform

I energy axis is defined so it would increase the accuracy of the calculation of certain parameters

over those calculated with a uniform grid, for the same number of grid points. These parameters
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could include normalization of the distribution, drift velocity, average energy, and kinetic rate

calculation. The first three of these parameters depends predominately on the bulk of the distri-

bution, while the last depends mostly on the tail of the distribution. Thus, while a non-uniform

grid that concentrates bins in the bulk may increase the accuracy of the drift velocity, average

energy, and normalization integrals over those calculated with a uniform grid, the resulting

kinetic rate information may be much worse than the uniform calculation. Likewise, a grid

which places many bins in the tail of the distribution may result in a rate calculation that is an

improvement over the uniform grid, but now the other three parameters are far off the mark. The

ideal case would be a grid allocated uch that the accuracy of all parameters is improved. This is

the motivation for Eq (42), with aa intelligent choice for the function G.

In order to help explore this possibility, Eq k44) was used as a distribution function. The

simplifying assumption thatfo doesn't change much over the interval C to e + &Sh allows the

imbedded fo terms on the right hand side of Eq (44) to cancel one another. This assumption,

while not strictly valid for regions around the threshold energy, will nevertheless allow Eq (44)

to serve as a starting point in the dynamic mesh allocation method. With the previous assump-

tion, Eq (44) reduces to a more tractable Eq (65).

f0(E) = exp[- 3 ( !E xQ,(x)Q,(x)dx

0

+fQ(x, f Q,(y)ydydx)] (65)

0 E

wheref, is the reduced distribution. Q* will be assumed to be a step function, with some thresh-

old energy E,, below which the cross section is zero, and above which the cross section is con-
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stant. The right hand side of Eq (65) is then analytic, and can be used to represent the

approximate solution t' the Boltzmann equation, with which the validating parameters are

calculated.

IE

(e) = exp[- 2 xQ,(x)Q,(x)dx

+ j J Q,(y)ydydx)] (66)
0 0

The parameters used were normalization of the distribution, average energy, drift velocity and

excitation rate. Although the distribution function itself was analytic, the integrations required

for these comparison parameters could not be carried out analytically when a non-zero inelastic

cross section was included in Eq (65). Therefore, these integrations were accomplished numer-

ically, using a uniform energy grid of 400 points, and used as the "standard". The other uniform

and non-uniform integrations were made on a 50 point grid, and compared to this standard.

Several choices for the function G in Eq (42) were tried, with varying degrees of success in

improving the calculation of the normalization, drift velocity, and kinetic rate over the uniform

integration. The choices for these merit functions were driven by their respective influence on

the placement of energy bins on the dynamic energy axis. Since an allocation function which

would place more bins in the body of the distribution wouldn't aid in the rate calculation, and

vice-versa, two merit functions were used to work in conjunction with each other. In this

method, the final merit function was the average of two others, one designed to aid the calcula-

tion of bulk dependent parameters (average energy, drift velocity) and the other designed to aid

in the tail dependent ones (kinetic rates). The function chos.n for the bulk optimization was an

energy moment of the distribution, where G was represented by

65



I

I G,(e) = eef,(e) (67)

where n is some power. If n = 0, then G, would be a normalization integrand. If n = 1, G, would

be an average energy integrand. Increasing the power of n will shift the peak of G, out to higher

I energies, which will delay the peak of the cumulative integral function F. In testing this algo-

rithm, it was found that the value of n that would result in the best integration of the average

energy and drift velocity for the non-uniform grid was dependent on the E/N ratio.

The integration of the tail was aided by constructing a function G given by the rate integrand:

G2(F) = Q(s)Cfo(F) (68)

Thus G=G,+G 2.

In integrating the rate parameter, it became apparent that the exact placement of the threshold

energy was a very critical variable. Consider a uniform energy grid where the threshold energy

is just slightly less than the bin energy, as in Figure 17. In this instance, the bin energy is defined

as that energy corresponding to the right hand side of a particular finite differenced bin. If the

inelastic cross section rises steeply, and the distribution is falling off rapidly, then the resulting

rate integrand will appear as that shown. The simple Simpson backward integrator would result

in a large over-estimation of the integral from the first bin containing a non-zero value for the

rate. On the other hand, the backward integration of the other bins would always result in the

under-estimation of the actual value of the integral. The result uf these two effects is that the

calculated integral may be high, low, or very close to the actual value of the integral. If the over-

estimation is approximately the same as the under-estimation, then the calculated integration will

be close to the correct value. This result will occur in spite of the errors in the integration

method.

I
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Figure 17. Rate integrand with c slightly less than a bin energy

Consider now a threshold energy slightly greater than a bin energy, as in Figure 18. In this

case, the rate integral is only under-estimated, and could be worse than the value calculated by

the previous method.

With the non-uniform energy grid construction technique used here, the bin before the thresh-

old energy is typically fairly wide, resulting in a significant over-estimation of the rate integral.

This is especially so with the addition of many more bins into the region due to the more

accurate integration in the following bins. Therefore, the placement of a bin at the threshold

energy becomes an important step in accurate rate calculation.
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Figure 18. Rate integrand with E, slightly greater than a bin energy on uniform energy grid

I Figure 19 shows the result of using this choice for an energy bin allocation function in defin-

ing a 50 point non-uniform grid. In this plot, the normalized distribution function and normal-

ized rate integrand are shown in order to visualize not only the construction of the allocation

I function itself, but also in order to understand the resulting integrations of each over the variable

energy axis, which is shown as the variable size grid. The inelastic threshold is at an energy of

I5.06.

I
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Figure 19. EDF and Rate Integrand and resulting Allocation Function

It is instructive to see how the variable energy grid will integrate each of the parameters of

interest. Figure 20 shows each of these parameters in a box layout. At the top left is shown the

energy moment ot the distribution along with the energy grid resulting from the merit function of

G. The integral of this function yields the average energy. Below the energy moment is the rate

integrand. The increase of the bin density in this region always resulted in a more accurate rate

calculation compared to the uniform method. The top right panel illustrates how the variable

axis will integrate the anisotropic part of the distribution, which yields the drift velocity. The

bottom right plot shows the symmetric part of the distribution function, whose integration will

result in the normalization that is used in both the rate and drift velocity calculations.

69



I
I

I 0 Energy Moment xO0 Drift Uelocity

1.00 1.00

3 0.50 0,50

*0.00yx0 0100 H+* +1IW!LI X100

0.00 4.00 8.00 0.00 4.00 8,00

x100 Rate Integrand x10 Fo Distributioi

* 1.00 1,00

0.50 0.50

0.001 111"1""' 1 """" 11111 ' xl0  0.00 11 fb+ xlO0
1 0.00 4.00 8.00  0.00 4.00 8.00

3 Figure 20. Non-Uniform Energy Grid with Validation Parameters

I Figure 21 shows the allocation function G, where n = 1.0 in Eq (66), at 5 Td and the distribu-

tion and rate functions from which it is constructed. Comparing this plot to Figure 22, which is

for the same conditions except n = 0.2, leads to some interesting points. As the value of n

3 increasc, its effect on the allocation function is evident where the slope is reduced at the lower

energies, resulting in a less dense allocation of energy bins in this region. Varying the value of n

I has little effect on the allocation of energy bins at the higher energies where the inelastic cross

section lies, thus :he calculation of the rate varies little.

I
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Figure 22. Allocation Function for 5 Td, n = 0.23
Figure 23 sho'"s a comparison of the validation parameters for different values of n, with the

uniform calculations for the same number of bins. It was fc-und that the optimum value of n in

3 Eq (66) for 5 Td was 0.6. At n vaiues lower than 0.6, the calculated normalization, average

energy and drift velocity parameters were all under-estimating the standard, while higher values

3 led to an over-estimation. Varying the n value had a very small effect on the non-uniform rate

calculation, which was always better than the uniform calculation, and is not included in this

I plot.

3
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3 As the E/N ratio is reduced, the distribution becomes more localized toward the lower ener-

gies, which results in the optimum n value increasing, as seen in Figure 24. Figures 25 and 26

illustrate how the different n values lead to their respective integrations of the validation

3 parameters. At the higher n value (Figure 25) the smaller slope of the allocation function at low

energies allows more bins to placed in the region where the distribution is falling off rapidly.

3 Although this movement of energy bins to the higher energies results in a poorer integration of

the low energy portion of the distribution, it is offset by the increased accuracy at the higher

energies. The lower n value (Figure 26) leads to too many points allocated near the origin, thus

3under-estimating the integration of the tail.

I
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It is interesting to note that even with the optimum value of n used for the non-uniform calcu-

lations, a 3.8% increase in the accuracy of the rate comes at the price of a 38.8% increase in the

I number of bins in the cross section region.

I
Electron -Electron Collisions with Non-Uniform Energy GridI

3 It is well known that electron-electron collisions tend to Maxwellianize the distribution, thus

smoothing out any sharp features that tend to result from inelastic collisions. In the absence of

any other effects, electrons colliding with themselves will relax toward a Maxwellian with an

electron temperature equal to 2/3 of the average energy. The electrons must obey this property

I regardless of the initial distribution. Conservation of energy and of particles must also be obeyed

g with each iteration.

The electron-electron interactions on the non-uniform energy grid were tested in several

I
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_ ways. With an initial distribution of a Maxwellian with a temperature of 2/3 the average energy,

the iterative solution was allowed to propagate forward in time. The test for the distribution con-

vergence was disabled, allowing each time iteration to proceed until a fixed number of loops

through the electron collision subroutine were accomplished, in this case 2000. Figure 27 shows

the resulting distribution, along with the initial Maxwellian distribution.
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Figure 27. EDF with electron-electron collisions only

The initial distribution was observed to depart from the Maxwellian as the program iterated

through the solutions. This departure is more evident at the lower energies. Conservation of

energy and of particles were obeyed at each iteration, within the limits of the numerical represen-

tation of each. When this test case was performed on the uniform grid, the initial and final distri-

bution were exactly the same out to at least six decimal places, with conservation of energy and

I particles observed. The deviation from the Maxwellian with the algorithm using a non-uniform

7
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3 grid indicates that the A,,, matrix is not properly constructed. Since the particles are conserved,

the boundary conditions applied to this matrix seem to be correct. The relationship between the

Akt and Bk, matrices also appears to be correct due to energy conservation.

In order to test the algorithm's ability to relax to the Maxwellian form, an initial distribution

was constructed with 3.6 x 1012 electrons at 1.5 eV, and a small fraction (1.0 x 105) in every other

3 bin. The temperature of the resultant Maxwellian must then be very close to 1 eV. Figure 28

shows the distribution at various points throughout the iteration sequence. Since the time step

I used was 0.2 ns, the distributions at 500, 1000, and 1500 iterations correspond to times of 100 ns,

200 ns, and 300 ns respectively.
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I Figure 28. EDF with electron -electron only; spike initial distribution

I Although it appears that the distribution is slowly relaxing to the Maxwellian at an electron

I temperature of I eV, conservation of energy and of particles was not obeyed to all orders. The

number density of electrons wa,- observed to increase with time, causing the system to therefore

I gain energy with time. This breakdown indicates a probable error in the implementation of the



I

I boundary conditions, even though conservation of particles was obeyed in the previous test case.

Even though the relationship of the A,,'s and Bk,,'s was designed such that conservation of

energy is always obeyed, this cannot hold if the particles are not conserved. When this same test

case was performed with the uniform grid, conservation of energy and particles was observed at

each iteration, with the distribution approaching the I eV Maxwellian in approximately the same

manner as Figure 28.

Electron Beams
I

In order to isolate the effect of the electron beam alone, the electric field was turned off,

thereby eliminating any field driven flux. A logarithmic energy axis was used, and a point

source of electrons was placed at 60.4 eV. The maximum energy of the grid was just slightly

greater than this value. A beam current of 10 Amps was introduced into the H2 gas, which was at

1 atmosphere and 300 K. The processes considered were vibrational excitations from the ground

state to levels 1 through 5, the first electronic excitation from the ground state, and ground state

ionization. Figure 29 shows the converged solution 26 ns after the beam turned on, with a Max-

I wellian being the initial distribution. For the electrons being injected into the plasma at 60 eV,

there are only two places to go. They can either excite the ground state to the first electronic

state (12.6 eV), or they can ionize the ground state H2 molecule (15.427 eV). The large increase

in population at 47 eV is due to the first process, while the peak at 44.5 eV is due to the second.
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Figure 29. H 2 EDF with Electron Beam Source at 60.4 eV

In the calculation of this distribution function, it was necessary to zero all momentum transfer

flux out of the energy bin containing the source beam. Without doing so resulted in a distribu-

tion centered around the source that was widely spaced in energy, covering r ;proximately 25 eV.

This broa, region was due to the large downflux of electrons due to recoil with the heavy

particles. Additionally, in the region between the secondary peaks and the source it was neces-

sary to set a lower limit on the number density of electrons in the energy bins. Due to the con-

stant depletion of electrons in this region without any influx of electrons from either below or

above, the population will continue to decrease with each iteration of the time-dependent

solution. As a result, the computation went unstable (ie, negative number densities) when the

computer reached its smallest representable number, which was of the order of 10-3. In order to

avoid this from happening, an articial lower limit of 1 x 10- was placed on the electron densities

at these energies.
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I The distribution is relatively flat across the intermediate region due to the small energy cou-

pling between the H2 molecules and the electrons, which is 2m/M. In this region momentum

transfer is the dominate energy transfer mechanism. The electrons will continue to exchange

energy with the heavy particles in this manner until the vibrational cross sections become effec-

tive. At the very low energies (approximately 2 eV and below), the gas molecules at 300 K are

I again exchanging energy with the electrons, with the distribution becoming a Maxwellian at

appromimately this same temperature.

In comparing this distribution to that calculated by Bretagne (3:821), the same general fea-

tures are observed. However, there is much more structure in Bretagne's calculation of the dis-

tribution. It appears that the first spike in the his distribution below the source beam (50 eV) is

i due to electronic excitation in H2, either Is to 2p or I s to 2s, both of which have a 10.2 eV

threshold. The large population just below this (45 eV or so) is probably due to ionization. The

gap that appears between these two peaks is likely explained by Bretagne's consideration of elec-

tron loss mechanisms, specifically recombination and diffusive wall losses. These effects were

not considered in the present calculation, and the resultant lack of structure between the two

peaks in Figure 29 is due to a large momentum transfer downflux from the energy bin filled by

electronic excitation. Likewise, any structure that may appear in the intermediate region is

"washed" smoothly away due to this same effect. By introducing loss mechanisms, not all of the

electrons will be able to collide elastically with there collision partners, since many will be lost

out of the continuum due to the recombination or diffustion. As a result, the downflux of

momentum transfer from one energy bin to the next lower bin will be reduced, and the structure

that Bretagne reports may then be observable.

The calculated solution with the source at 90.0 eV is shown in Figure 30. The basic structure

of the distribution is similar to that with the 60.4 eV source. Here again, the differences between

Bretagne and the calculated distribution lie in the lack of detailed structure.
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Figure 30. H2 EDF with Electron Beam Source at 90.0 eV

Negative Total Electron Mobility

In order to explon. - possibility of negative mobility, the solution method utilizing the time-

dependent Boltzmann equation was exercised under various conditions of physical interest.

Since the principle means by which a negative mobility, and therefore a negative drift velocity,

can occur is a low energy loss of electrons, this process in the form of attachment was included.

Fluorine, which has a large attachment cross section at low energies, was used as the attaching

gas, with Argon used as the primary gas. Several gas concentration levels were explored, result-

ing in a strong influence on the drift velocity.

The momentum transfer and attachment cross section for Fluorine are shown in Figure 31.

The large cross section for attachment at the low energies results in a high probability of the
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electrons to be lost at these same energies. Since the cross section falls off very rapidly, the elec-

trons at energies greater than 2 eV or so will be largely unaffected, with the result being a

reduced distribution with a positive slope at low energy, and a more traditional negative slope at

the higher energies.
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Figure 31. Fluorine Cross sections

The energy distribution calculations were performed on a 150 point uniform energy gfid, that

was typically 8 eV at the maximum energy. Initially, a gas mix of 100% Ar and 0% F2 was used

to validate the drift velocities calculated from the code. The calculated drift velocities were com-

pared with data (5:612) resulting in fair agreement (Figure 32).
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I Figure 32. Drift Velocity in Argon at Low E/N

Two mixes of Ar/F2 were used, the first being 99.9% Ar w.th 0 1% F2, and the second 09.5%

Ar and 0.5% F2. At low E/N, the field driven flux is very weak, resulting in a distribution that

falls off rapidly at higher energies. This rapid decrease in the distribution is due to the small

field driven flux combined with the Argon momentum transfer cross section that increases rap-

idly with energy, resulting in a collision frequency that increases rapidly. As this collision fre-

j quency increases, the elastic energy transfer becomes greater, resulting in the steep negative

slope. At the low energies, the attachment process will continually serve as an electron sink,

I resulting in a distribution with low populations in this energy region. The EDF for a 99.5/0.5

mix of Ar/F2 at 0.5 Td is shown in Figure 33. The low energy region with the positive slope is

responsible for the negative drift velocity. This region also has a characteristic temperature that

is negative.
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Figure 33. EDF in Ar/F 2 for 99.5%/0.5% Mix at 0.5 Td

The resulting drift velocities are plotted against EIN in Figure 34. The distribution with the

higher concentration of Fluorine requires a greater upflux of electrons in order to recover a posi-

tive drift velocity. Since this upflux is caused by the electric field, a larger E/N ratio is required

to obtain a positive drift velocity compared to the lower concentration case,
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Figure 34. Drift Velocity in Ar/F2 vs E/N

In both mixtures, as the E/N is increased, the field driven flux increases, while the effect of

the attachment process is reduced. This results in the calculated drift velocities for both mixes

approaching that of pure Argon, with the lower F concentration case approaching it much sooner.
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VI. Conclision and Recommendations

The code developed by Seger (16) has been improved to include the processes of superelas-

tics, attachment, and excitation and ionization from excited states. The capability to solve the

Boltzmann equation on a non-uniform energy grid has also been added to the code. This added

capability is essential in order to extend the energy range of the solution past a previous upper

limit of 30 eV or so. With the non-uniform energy grid, the upper limit has been increased three-

fold, to a demonst,.,ted 90 eV. These larger energy ranges are essential in order to explore the

effects of an electron beam on the energy distribution functions, which have been calculated

under conditions typical for a hydrogen magnetic multicusp discharge. In addition, the recoil

term for momentum transfer has been finite differenced using a new method that recovers the

expected Maxwellian form in the absence of electric fields, as well as maintaining numerical sta-

bility under this same condition, both of which were lacking in the previous version of the code.

Transport parameters computed with the non-uniform energy grid are generally in agreement

with those calculated with the uniform grid as well as experimental data. The use of the loga-

rithmic grid yields more accurate computations of the transport parameters for H2 than for Ar.

This is likely due to the grouping of inelastic processes at the lower energies in H2, whereas in Ar

the inelastic processes occur at higher energies. It is expected that the accuracy of the calcula-

tion of the transport parameters with a log grid in He would be worse than in Ar, due to its

greater inelastic thresholds. The optimization of the construction of a non-uniform grid has been

explored with limited success. A more accurate kinetic rate calculation is quite feasible,

although it seems that the price for such comes in the form of a less accurate calculation of the

drift velocity, average energy, and normalization - parameters which depend mainly on the bulk

of the distribution. The benefit of placing an energy bin at the threshold value of each inelastic

process is established, resulting in a more accurate kinetic rate calculation. The utility of this

"threshold marking" technique is enhanced when a cross section with a large slope at threshold is
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used. Finally, the possibility of steady state negative drift velocities has been explored in lean

Ar/F2 mixtures. The numerical calculations indicate that at low E/N values and with the proper

gas concentrations, negative drift velocities can be achieved.

While these added capabilities increase the ability to analyze plasmas, more can and must be

done to increase the accuracy of the solution, as well as the transport parameters computed from

it. A better method for establishing the non-uniform axis is essential in order to achieve its

potential at being more accurate than the uniform axis. As shown previously, the logarithmic

grid is better in molecular gases than in rare gases, with the uniform axis being generally better

in either. However, it is still maintained that with the proper grid the non-uniform can be better

than uniform, at least in the calculation of some of the parameters of interest. The optimization

of this non-uniform grid needs to be explored more fully in order to achieve this goal.

In electron beam generated plasmas, the inclusion of recombination and diffusive wall losses

appears to be important in reproducing the structure that the distributions calculated by Bretagne

(3) exhibit. Additionally, electron - electron interactions within the electron beam generated

plasma will tend to Maxwellianize the distribution, and thereby serve to smooth out any sharp

structure arising in the distribution from inelastic collisions. Therefore, its inclusion into the

solution method is important, especially at the higher fractional ionization levels.

Another problem with the present code exists in the finite differenced terms for the field

driven flux when used in conjuction with an e- beam. As has been reported, very sharp structure

can result in the distribution as a consequence of the electrons being fed at high energies, and

relaxing to lower energies through inelastic collisions. The field driven flux term includes a first

and second derivative of the electrons number density with respect to energy. Since any sharp

features in the distribution will cause both of these derivatives to be discontinuous, numerical

instabilities around these regions have resulted when the present code is used with both an elec-

tric field and an electron beam. It may be possible to eliminate part or all of this instability by
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finite differencing the field driven flux term to higher orders and/or using a central difference

scheme in place of a forward difference one. Doing so, however, will result in the C matrix no

longer being tridiagonal, which will increase the time required to decompose it.

In order to isolate the electron beam generated plasma from the presence of an electric field,

the recoil momentum transfer flux term had to be finite differenced in a new way, based on that

used by Greene and Elliott (6). With no electric field, and in the absence of any source, this

version of the recoil flux term has maintained numerical stability and reproduced a Maxwellian

at a temperature of 2/3 of the average gas temperature as required by physical laws. However,

when this representation of the recoil term was used in conjunction with an electric field in

Argon, the distribution was overpopulated at the lower energies, and underpopulated at the

higher ones. The resultant transport parameters were also well off the experimental values.

Returning to Rockwood's recoil term re-derived for the non-uniform energy grid (Appendix A)

resulted in the proper calculation of the distribution function and its transport parameters. How-

ever, when this version of the recoil term is used in the absence of an electric field, numerical

instability is the result. It would seem likely that there is some value of the electric field at which

Elliott and Greene's version will produce correct results. More testing and investigation is

required in order to determine where the cutoff between one representation and the other will be.
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Appendix A

Derivation of field and recoil flux terms for a non-uniform energy axis

Although the terms representing the flux af electrons through energy space due to the applied

field and recoil have been derived in the past, the inclusion of a non-uniform energy axis requires

that they be rederived explicity. In this section, they will be considered separately, and then

grouped together at the end. First, consideration will be given to the field driven flux term, with

the momentum transfer term following. The energ' axis will be define as

b (k) b (k+j)

E (k-3/2) E (k-i/2) E (k+1/2)

S k- Bin k Bin k+1

a (k-1) a (k)

Figure 35. Energy Axis for Momentum Transfer

Field Driven Flux

The origin of the field driven flux term as presently implemented in Megaboltz stems from a

paper by Zel'Dovich and Raizer (19), as reported by Greene (7). In this paper, they expressed

the continuity of electrons under the influence of an intense electromagnetic pulse as

Dn(E) - _J+Q (A-)
at 8
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where J is given by

J = n(c)u -DD C

where n (E) is the number density of electrons with energy between c and E + &, u is the "veloc-

ity" of the electron along the 1 dimensional energy axis, and D is the diffusion coefficient along

the energy axis. The velocity of the electron along the energy axis can be envisioned as being

similar to the velocity of the electron through phase space. In such an analogy, the geometric

divergence of the flux (n (v)v) through phase space is equivalent to the energy divergence of the

flux (n (e)u) through energy space. Here, the velocity of the electron along the energy axis is

defined as

dp-u =(A-2)
dt

The diffusion coefficient in energy space is written analogously to that in geometric space:

D =-16CA (A-3)

The ratio of AzIAt can be expressed as eEv, since the electric field is the only force on the

electron in the consideration of the field driven flux. Thus, Eq (A-3) can be expressed as

D = l(veE)2At (A-4)
3

90



The assumption is made that every time the electron collides with a heavy particle, it will give

up all of its excess energy. Doing so allows At to be expressed as INS,, where v., is the momen-

tum transfer collision frequency. Eq (A-4) can then be written as

2(eE)2e
D - 3mvm (A-5)3 mvM

It will prove to be advantageous to express Eq (A-5) in terms of E/N:

S2N 2e 2(E/N)2e (A-6)
3 my,,,

The "velocity" u can be expressed in terms of the diffusion coefficient as (19):

u(e) = D (A-6)

Finally, then, the current density in energy space due to the applied field can be expressed as:

2 2(E/) 2F J
Jf = 2 m(v,,/N)( n 'a (A-7)

which is Eq (5). So now it becomes necessary to finite difference this equation in energy space.

A simple backward difference expression for this differencing will be used:

an aJ! KJ/k)-Jf(k - 1)

= k- ilkI+b'k+, lk+1-(d, +b ")ilk (A-8)
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It will be useful to define the variable Tlk such that it represents the number density of elec-

trons per unit energy in bin k:

11k = [crn 3eV 1 ] (A-9)Ack

Doing so will allow the following expressions to be redefined as

- ( nk+1 nk "]Ak

nk +1 +-.)-- -- (A-10a)

(Al k Ic

- D 1 k+1 1 k (A-1Ob)ae

The motivation for doing this lies in the fact that the electron number density in each energy

bin needs to be weighted by the width of that bin. Using Eq (A-10a) and (A-10b), Jf(k) can be

expressed as

J/k) = k (lIk++Lk)'-----ek(lk+I-T1k)]

where ak = 2eN(E/N) (A-11)
3 mVk

In a like manner, J(k - 1) can be written as

J/k -41) = ak.{I k+lk-) &k - k l(Tlk - k) (A-12)
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Substituting Eq (A-11) and (A-12) into Eq (A-8), and grouping into like terms of ik, 7k+,

and rjk, the coefficients can be written as

b'$k +1) =- F-&

a'/k) =- & " + k (A-13)

where the prime designates that these are the coefficients for the ilk I I and ilk terms respectively.

Flux due to Elastics

Rockwood gives the electron current density in energy space due to elastic energy transfer as

-(kT_ 
n

=e 1 n - ) -kT.- (A-14)

The finite differenced expression of Eq (A-14) as given by Rockwood (14:2349) allowed Ak's

that could be negative, thus causing numerical instabilities in the computation of the solution.

Following the guidelines of Greene (7:2948), the following approach is used:

VnT - - n
Jci 2 ne,-vTc (A-15)

where to represent --aJ.V/aE the frst term of Eq (A-15) is backward differenced, the second term

is forward differenced, and the last is backward differenced. Thus, the following expressions are

used:
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I vnT T- -d = -- [vlk-vklrl] (A-16a)

a(n eV) + +-1

-nk + [k + e +1k + I-VkFrk] (A-16b)

aF- an-1 Il+ I-7 1

i[ VTE-j = T[Vk4 '-kf )~

71 k ] lt-

where E = Ck-- -- (A-16c)

Again, grouping into like terms of TAkIk+ , and rlk -, the coefficients can be written as

ael'(k + 1) = Vk+l k+l+ l. kk (A-17b)AEA

2d() V 1+ kj (A-1I7a)

where the prime designates that these are the coefficients for the ik + , and lk terms respectively.

Putting it all together

Moving back to the original representation for nk and nk + 1, the coefficients become

at(k) = e2E ~ 1-1 )+3 mevk + 4 Jt +

2 A sk] +2Fk 
(A-18a)
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++ +3m~Vk 4k -" c

Vk + Itk + I TVkF-'(A1b

k+1 A~k~ +A

In practice, it has been found that the use of these equations for the case of a zeroed electric

field results in the distribution obtaining the Maxwellian steady state solution as expected. In

these cases, it has been verified that the average energy of the distribution is 3/2 the gas tempera-

ture. However, when Eq (17a) adn (17b) are used in conjunction with a non-zero electric field,

the Bk coefficients, which govern the rate of demotion from one bin to the next lower bin, are too

large, and result in a distribution whiclh falls off much faster than it should. Therefore, in the

present version of Megaboltz, the Rockwood recoil expressions rederi, .t for the non-uniform

energy axis are used when an electric field is present, while Eq (17) is used with no electric field

present. The Rockwood recoil term is Eq (15a) expressed as

Jel = inT- _)-T -n ] (A-19)

Again using Eq (A-Oa) and (A-Ob), this equation can be finite differenced according to Eq

(A-9). Collecting the coefficients of like electron number density (nk -1, nk, nk+ 1), the terms for

ak_ 1, (ak +bk), and bk+I are established. The resulting expressions are given as

ael(k) = [ T (A-19a)eA~k LA4- jk4 )2

FT Lk)+ E

bel(k+l) = CA - (A-19b)
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I Appendix B

Derivation of electron-electron collision term for a non-uniform energv axis

Let an energy axis be defined such that the energy of bin k, LA, is defined at the center of the

bin with a width Ack. Using this definition, nk represents the number density of electrons with

energy between LA -T and EA +-L. The time rate of change of the electron number density at k

is given by

W °ee =Jk + 1/2 - Jk - 1,2
Ack

k-nkI + b'kl,+lnk+ -(a'. +b')n k  
(B-1)

INow, let the electron number density at the boundary between two bins to defined as

nI=Et+j2 -Acknk + I + AF-k + Ink(B2
IE=EA+l,2  = AL~A+~+ 1AA+ (B-2)

Similarly, the energy derivative of the electron number density at the boundary is defined as

3" I = n + - n . ( B -3 )

Eq (7) is finite differenced at the boundary of the bins k and k+l, thus becoming

ik +112 = al)A[ I ( knkI+AA+In LA+1 -LA

i Jt~~~lt2~ Z .12P~+P) lF- :en+k+.~'ln) 2E+i.. +I-z'-+ -n -nl]"+ Et

(Q+ I +Q kn+1+A +n,),(B-4)
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I

A similar differencing at the boundary of bins k and k- I results in

___al_ I AF1( In + knk 1 'nk -

1/22 Ck- /2( k- I +&~k E-k -Fk -I

S 2 Qkj AE - + A-k } (B-5)

Replacing the integrals contained in Eq (7) with summations,

U 1=1

+ Ek-'n*Al(1 - Hk,)] (B-6)

Qk= 3 XV skQk 3Ek1 I nAF-,Hk (B-7)
1=1

0 l>k
whereHk,' 1 l _<k

Substituting Eq (B-6) and (B-7) into (B-5), and collecting the coefficient of n 1, a. 1 as used

in Eq (B- 1) is determined. This coefficient becomes

s: {( +n I(k Hk,I + -k Hk- ,)

x [euk-2 A )k_ 1 +&k

+ [Sk(l - Hkl) +-Ek_(l - HkI,)I (eluk I)}

where uk1 AE- ) + 2 (B-8)where-1. 2 A m -k_ +S AEk &k -I + Fk

97



I

I Defining a _ such that

I
s

alk-I = X Al Inh (B-9)

the coefficient Akj is written as

1/2 -1/2+ek'Hkt
Ak,t = a-{(C. +H Hk '1)

I
I x Et~k-2 Ack+A&k+l

i + [k + (Hk + ,) + k(1 - Hkl)] (e Uk)} (B-10)

This coefficient for nk can be interpreted as the rate at which electrons with energy e. are

I promoted to energy e. + 1. This promotion is accomplished by an electron with energy E, being

demoted to energy F,-_. An expression similar to Eq (B-10) can be derived as the coefficient of

nk + 1 by using Eq (B-4). When transformed into the k0 bin, this coefficient becomes Bk,, and is

interpreted as the rate at which electrons with energy Ek are demoted to energy Fk-I by electrons

with energy l going to F-+ 1.

I Boundary conditions are applied to Eq (B-10) and the corresponding equation for Bk,j so that

I conservation of particles is strictly observed. These boundary conditions given by Eq (38), and

physically mean that no electron can be demoted from the lowest energy bin when k = 1 , or

I promoted from the highest energy bin when k = S . When Eq (B-10) and the corresponding

equation for Bk, are programmed, energy is not conserved. Additionally, these coefficients will

not drive the distribution toward a Maxwellian over time as they should when only electron -

electron collisions are considered. In order for the solution method to strictly observe these last
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two properties, the Ak,'s and Bk,'s must be properly constructed.

Conservation of energy can be expressed as

en(-d-S dnk

fn(E)de d AEk

dt 0=0 (B-11)
fn(e)de 

k=1

I 0
Using Eq (B-1) as the time derivative of the electron number density, and the definitions of

I the coefficients a'k_1, a'k, b'k, and b'k+, as given by Eq (37),Eq(B-11) becomes

I Znkn[(ek+lI -k)Ak, -(ek -ek_.)Bk,] = 0 (B-12)

This condition will be ensured by

Bk l = Ai'k (B-13)
I - Ck -1

In order to determine the constraint on the matrices caused by the need to obtain the Maxwell-

ian in the steady state, the microscopic interpretations of Ak,j and Bk,j are used. Once the steady

state Maxwellian has been achieved, then the flux from bin k upward to bin k+ 1 must be

matched exactly by the downward flux from bin k+l to bin k. Thus,I
Aklnknf = Bk+ 1,t-fnk+lfnt- (B-14)

I Using Eq (B-13) to express Bk + 1,1 - in terms of the A matrix, Eq (B-14) becomes
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= A 1 ,k+I .I--1 )nk+l-n1 (B-15)

Since the Maxwellian distribution defines the electron number density n* as

n. Ce~exi{_ y] (B-16)

the two number density ratios can be rewritten and the final expression for Eq (B-14) becomes

Ak,, = A -1 k+1 ( FE --- Ek) l ) _I_ l )112

X x (AE1 + AS - 1) - (A :k I+I - A ') 1  (B-17)
x ex 2T

In practice, Eq (B-10) is used to define the part of the A matrix on and below the diagonal, as

well as the elements just above the diagonal. Eq (B-17) is then used to define the rest of the A

matrix. The first column and last row of the A matrix is set to zero, which will ensure the con-

servation of particles as demanded by Eq (38), then the entire B matrix is constructed by the use

of Eq (B-13).
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Appendix C

User's Guide to MEGABOLTZ

The current version of MEGABOLTZ is designed to run under UNIX version 4.3, with the

IMSL v9.2 library and METALIB library installed. There are currently two calls to the IMSL

library for the L-U decomposition and substitution, while all graphing functions are accom-

plished by the METALIB library. In order to run, MEGABOLTZ expects some files to be in the

same directory as the executable code. These files consist of the following:

FILE DESRIPTI

megaboltz executable Boltzmann solver code

input.com ASCII data file describing the physical conditions under the
solution is to be obtained

*.crs ASCII cross section data file. ie., ar.crs for Argon or h2.crs for
Hydrogen. This file is explained in detail in Appendix D.

The input file, input.com, is shown in Figure 36. The E/N select switch allows the user to

chose if the calculation is for one E/N or for a list of E/N's. If a list of E/N's is used, the list may

be either equally spaced (choice 3), or contained in an external file of E/N's called "eovern.dat",

(choice 2). If the equally spaced option is used, the number of data points is calculated by [(Start

E/N - End E/N) / delta E/N ]. For example, suppose you are interested in running 2 to 30 Td, by

2 Td increments. Select the start E/N value to be 30.00d-17, and the end value to be 2.00d-17.

The number of datapoints is [(30-2)/2] = 14. Notice that the actual number of datapoints will be

one more than this, or 15. The start value is given as 30 Td instead of 2 Td because MEGA-

BOLTZ expects the higher value to be given first. This choice was driven by the quicker

convergence at the higher E/N values. The initial guess distribution for the list of E/N's will be a
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Maxwellian at the start E/N value. For each next E/N value, the initial guess will be the

converged solution for the previous E/N. Doing things in this order speeds the calculation of the

distribution at each E/N.

*--- Input Parameters

E/N Select:
1-Single Point -> Solve for START E/N value only
2-Read Ext File -> Solve for E/N's in File 'eovem.dat'
3-Iterate -> Solve for equally spaced E/N's below
START E/N (V-CmA2): 1.0D- 17
END E/N :40.00D-17
DATA Points : 8

E/N Choice (1,2,3) : 1

Gas Temperature (K): 3.d2
Gas Pressure (Torr): 7.6d2

e- Num Density (CmA-3): 1.0D13

*- Mesh Parameters
Time Step (S): 1.d-9

Number Of Bins: 150
Bin Width Select:
1-VARIABLE -> Variable Bin Width
2-LOG -> Logarithmic Bin Width
3-L'NEAR -> Constant Bin Width

Max Energy (eV): 10.0

Bin Width (1,2,3): 3
*--- Program Switches
E-E Collisions? (Y/N): N

e- Beam? (Y/N): N
Source current: 1.d-3
Source location: 30.0
Save Data As: test.dat
Save Graph As: test.plt

*--- Gasmix data by type (5 maximum), percent (enter as XXX), and whether
you want to view its cross-sections (enter either Y or N)

_Gas_ _PercentView?_
ar 99.9 N
f 0.1 N
EOF 0.0 N

Figure 36. Sample Input File "input.com" for MEGABOLTZ
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The mesh parameters determine the energy grid along which the solution will be determined.

For a uniform grid, the number of energy bins and the maximum energy will determine the

energy bin width. In the case of a Log grid, this maximum energy has no meaning. Instead, the

program will prompt the user for an alpha value (Eq (64)). The maximum energy is determined

by the sum of each energy bin defined by this parameter. By varying alpha, the maximum

energy can be selected. The code will loop through this process until the user agrees to procede

with the resulting maximum energy. The Variable grid allocation method is presently under

development, and its use is presently not recommended. The time scale to be used is also set in

this block. This sets the time step of integration for the coupled set of differential equations,

given in Eq (11) and Eq (23). This value should be at least as small as the characteristic time

scale for electron interaction, given by I/v, where v is the collisional frequency for the dominate

process.

The file names under which the data and graphs should be saved are listed in the next block,

along with the swithes governing electron-electron collisions and electron beams. If a duplicate

file name is used, MEGABOLTZ will prompt the user for a new file name. The final block lists

the gases to include in the calculation. The gases listed in this section must be spelled exactly as

the prefix to the .crs extension for the corresponding gas. For example, if the cross section file is

ar.crs, then the gas listed here is ar, not Ar. After the final gas, EOF must be placed as the end of

file marker, along with a gas concentration of 0.0%. This an important step, because without it

MEGABOLTZ may be able to compute a converged solution that is incorrect.

Once the solution has converged, MEGABOLTZ will save all the transport and energy bal-

ance data to the file specified in "input.com". The solution will be saved in a file named "N.dat".

The graph of this file will be saved to the file specified in "input.com". A listing of all files

written by MEGABOLTZ is shown below.

FILE DE MN
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test.dat Name of ASCII file specified by user in "input.com" containing
transport and energy balance data for each E/N calculation.

tesLplt Name of file specified by user in "input.com" containing the
plot file of the distribution. This file is constructed so as to print
out on a laser printer when used with the command mit "test.plt"
> lpr -Pimagen, from the Unix sytem prompt.

N.dat Name of ASCII file containing the electron energy distribution
of the converged solution for each energy bin.

xsmod.dat Name of ASCII file containing cross section information. This
file is written as each data point from the cross section file *.crs
is read. It is used mainly for debugging *.crs files. (Appendex
D)

The sample output file "test.dat" is shown below:

Megaboltz Output Data
Bins Binwidth Timestep
150 0.1000 L.OOE-09
Ni/N : 0.OOE+00
Ne final: 8.75437E+12

E/N Rion Rion2 Rexc Rsuper Rattach

1.0000E-16 1.2312E-17 O.0000E+00 5.9674E-12 0.OOOOE+00 0.0000E+00

E/N <E> E char Vd Df E Balance

1.000D-16 5.371D+00 7.819D+00 9.221D+05 2.946D+03 3.784D-01

Megaboltz Energy Calculations
Energy Loss Mechanisms

E/N Sys Loss El Losses Exc Losses Ion Losses Atch Losses

1.0000E-16 2.2655E+09 6.2973E+08 1.7045E+09 3.259E+04 0.0000+00

Energy Gain Mechanisms
E/N Sys Gains J.E Super e Beam
1.OOOOE- 16 2.2569E+09 2.2569E+09 0.OOOOE+00 0.OOOOE+00

Figure 37. Sample Output File "test.dat" From MEGABOLTZ

Finally, it must be stressed that MEGABOLTZ expects the parameters listed in "input.com"

to be in the proper place. If the template given for "input.com" is followed exactly, no problems

will occur. However, MEGABOLTZ has not been "idiot-proofed", and it is adviseable to keep a

backed up copy of this file. Even experienced users have found it to be advantageous.
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Appendix D

Cro Section Format for Megaboltz

Just as MEGABOLTZ expects the "input.com" file to properly formatted, it expects each

cross section file to be properly formatted. The purpose of this appendex is to familiarize the

user with the construction of the cross section file to the extent that modification can be com-

pleted relatively painlessly. Again, having a backed up copy of each cross section file is an

extremely good idea. Figure 38 shows the cross section data file for Argon.

The first line gives just the gas name. This title is not read by MEGABOLTZ, so it can be in

any format. The next line contains three pieces of information. The first four spaces are dedi-

cated to the molecular weight for the gas, while the next three are used to designate how many

cross sections are included in the file. This must be an integer between 1 and 999 (which would

be a lot of cross sections!). The last number is the ionization threshold in eV for the gas, how-

ever it is not read by MEGABOLTZ. Each line is ended by a forward slash (/) that must be out-

side of the defined block area.

Each cross section table within the cross section file consists of three "lines", except the first

table which is the momentum transfer table and consists on only two "lines". These lines are not

to be confused with lines of ASCII, but rather have no particular maximum length. The end of

one of these line is defined by a forward slash (/). The first line of each table begins with a three

space block dedicated to the number of data point pairs (energy, cross section) in the table. The

number occupying this block must be an integer. The next 12 spaces are in a reserved block

which designates the type of process the table contains. For example, this identifier could be

"elastic", "inelastic", "ionization", or "attachment", where the quote marks are not used. In the

process of running, MEGABOLTZ will look for these identifying words as labels, thus they must

be spelled correctly, with no capitals. The next 15 spaces are dedicated to a block that describes

the origin of the data. The quotes are included as part of the 15 total spaces of the block. The
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next 15 spaces are dedicated to another block, which can be used as a continuation of the pre-

vious one. Again, the quotes are included as part of the 15 space total. The final variable on this

line represents the scale of the data points. This occupies 4 spaces (XXX.X). This is used as a

multiplier for the cross sectional values, and is usually 1.0. This line is ended with a forward

slash (/) that is outside of the defined block area, however, remember that Fortran 77 can only

read 72 characters per line.

AR
40. 5 15.759/

54 elastic 'FAUST.J.PHYS,"1977,30,61-72' 1.0/
0.000,0.000 0.014,3.880 0.017,3.560 0.020,3.280 0.025,2.890
0.030,2.570 0.035,2.290 0.040,2.050 0.050,1.662 0.060,1.357
0.070,1.114 0.080,0.916 0.090,0.754 0.100,0.621 0.110,0.511
0.120,0.420 0.130,0.348 0.140,0.284 0.150,0.233 0.170,0.161
0.180,0.135 0.190,0.115 0.200,0.101 0.210,0.092 0.220,0.086
0.230,0.085 0.240,0.087 0.050,0.091 0.260,0.098 0.280,0.120
0.300,0.151 0.320,0.188 0.325,0.206 0.400,0.317 0.500,0.504
0.650,0.792 0.800,1.050 1.000,1.370 1.200,1.660 1.500,2.050
1.700,2.330 2.000,2.700 2.500,3.430 3.000,4.200 4.000,5.700
5.000,7.600 7.600,12.50 10.00,16.61 15.00,16.14 20.00,12.50
40.00,6.0 60.00,4.6 80.00,4.1 100.00,4.0
27 inelastic 'AR El' ' ' 1.0 /
0. , 0. 11.6 , 0. 11.65 , .0037
11.7 , .0074 11.75 , .0104 11.8 , .0134
11.85 , .0141 11.9 , .0149 12. , .0163
12.1 , .0168 12.2 , .017 12.4 , .018
12.6 , .0188 12.8 , .0196 13. , .0205
13.2 , .0213 13.4 .022 14. , .0225
20. , .0271 30. ,'.0275 40. , .0275
50. , .0233 60. , .0203 70. , .0181
80. , .0163 90. , .0149 100. , .0137
11.6, 1.0, 0.0 /
23 inelastic 'AR E2' ' 1.0 /
0. , 0. 11.8 , 0. 11.85 , .0022
11.9 , .0078 12. , .0134 12.1 , .0172
12.2 , .0214 12.4 , .0295 12.6 , .0411
12.8 , .0516 13. , .0643 13.2 , .0753
13.4 , .0778 13.6 , .078 14. , .0784
30. , .0944 40. , .0912 50. , .0774
60. , .0675 70. , .0600 80. , .0542
90. , .0494 100. , .0455 /
11.8, 1.0,0.0 /
24 inelastic 'AR E3' ' ' 1.0 /
0., 0. 13.2 , 0. 13.4 .0013
13.5 , .0018 13.6 , .0069 13.7 .0133
13.8 , .0206 14. , .0359 15. '.1323
16. , .2826 17. , .465 18. ,'.645
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19. , .82 20. , 1.16 22. , 1.27
26. , 1.48 30. , 1.56 40. , 1.48
50. , 1.256 60. , 1.095 70. , .9740
80. , .8790 90. , .8024 100. , .7390 /
13.2, 1.0,0.0 /
38 ion 'AR I' 'KIEFFER,78' 1.0 /
0. , 0. 15.759, 0. 16. , .02023
17. , .1337 18. , .2938 19. , .4601
20. , .6272 21. , .7873 22. , .9325
23. , 1.056 24. , 1.179 25. , 1.302
26. , 1.408 28. , 1.601 30. , 1.803
32. , 1.962 34. , 2.111 36. , 2.243
38. , 2.331 40. , 2.393 42.5 , 2.446
45. , 2.49 50. , 2.534 55. , 2.595
60. , 2.657 65. , 2.727 70. , 2.771
75. , 2.815 80. , 2.841 85. , 2.85
90. , 2.859 100. , 2.85 115. , 2.824
130. , 2.762 145. , 2.709 160. , 2.622
180. , 2.516 200. , 2.393 /
15.759, 1.0/

--EOR--
--EOF--

Figure 38. Cross Section Data File for Argon

The second line of each table actually consists of many lines of numbers, representing the

pointwise description of the cross section. These data points are formatted as (Energy, Cross

section), where the energy is in units of eV, and the cross section default is units of !OE- 16

cmA2. This default can be modified with the scale variable defined earlier. There is a comma

between each number of the data pair, while at least one space separates each data pair from each

other. Once each of the data pairs in each table is listed, a forward slash (/) designates the end of

the line.

The third line is included only for cross section tables after the momentum transfer table. The

format of this third line depends on whether the table is for an "inelastic" process or not. If the

table is for "inelastic", then the third line consists of three blocks. If the table is for "ionization"

or "attachment", then this third line is constructed of only two blocks. Each of these blocks has

no specific length, rather, they are separated by commas. The first block of both types of lines

designates the threshold energy for the process, in eV. The second number in the third line rep-
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resents the ratio of the number of gas particles to be affected by the process to the number of gas

particles in the ground state. Thus, this number must be between 0.0 and 1.0. When this number

is multiplied by the total number of gas molecules, the result is the number of molecules affected

by the state. For any process affecting ground state molecules, this number will be 1.0. This

includes ground state ionization and excitation, as well as a process such as attachment. By mak-

ing the value of this variable 0.0 for any of these processes, that particular process can be

"turned-off" in this manner. For "inelastic" processes, the third number designates the number of

superelastic molecules to consider. This number is a ratio of the number of molecules in the

upper excited state of the excitation process, to the number in the lower state of the same pro-

cess. Consider an excitation process from the ground state to some upper excited state j. If only

1 out of every 10,000 molecules is in the state j, then this number would be 1.OE-5. In

calculating the effects of superelastic collisions, the code will use this number in determining the

number of collisional partners for the electrons. This line is ended with a forward slash (/).

The selection of these parameters formatted in this manner may seem to be ackward, but after

practice their use will become second nature and comfortable. The hard structure of the cross

section files is very strict, and very unforgiving. In order to help the user with the formatting of

the files, MEGABOLTZ will recreate the cross section file as it reads it. This file, called

"xsmod.dat", is created each time MEGABOLTZ runs, and does not have to be in existence prior

to running the code. This file actually contains two files: the first file is the cross section file

rewritten, while the second file consists of the interpolated cross sections for up to five tables.

Many times MEGABOLTZ errors can be traced to incorrectly formatted cross section files.

"xsmod.dat" is designed to help iron out these errors.
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